Characterisation of Aquifer for Water Supply to a cultivated farm land in a Basement complex using Geoelectrical Techniques.

Olurin O. T., Ganiyu S. A., Hammed O. S., Alabi A. A., and Jegede O. Corresponding email: stolurin@yahoo.com and olurin@physics.unaab.edu.ng,

Abstract

Exploration of groundwater in Abeokuta and its environ is a thought provoking task due to the heterogeneity of the geological formation of the study area. Hence, proper understanding of the geological formation of the area using geo-electrical investigation is necessary for successful prospects for groundwater resources and the protective capacity of the study area through the assessment of longitudinal conductivity value on the cultivated farmland. The study was conducted on a cultivated farmland situated inside the Federal University of Agriculture, Abeokuta (FUNAAB) which lies between latitude 7°13'N to 7°15'N and longitude 3°24'E to3°26'E. In this study, the geological formation of the subsurface, aquifer characteristics of the groundwater potential and protective capacity in cultivated farmland at Federal University of Agriculture Abeokuta (FUNAAB) South-Western Nigeria were explored using Vertical Electric Sounding (VES). This research was done on the cultivated farmland to investigate using 1-D electrical resistivity survey and soil laboratory analysis (bulk density, porosity, hydraulic conductivity and textural analysis). Six vertical electrical soundings (VES) were conducted within the study area. The iteration curves, the real resistivity of the layers, the thicknesses (h) and real depth of overburden on the aguifer were obtained using WINRESIST. Two resistivity sounding curve types were obtained from the survey area and mostly H-types ($\rho_1 > \rho_2 < \rho_3$) except at VES 1 which has KH type($\rho_1 < \rho_3$) $\rho_2 > \rho_3 < \rho_4$). The percentage frequency of the curve types is 83.33% for H-type and 16.67% for KH type. The range of the values of thicknesses of each layer for all the selected six VES points are given as: topsoil ranges between 0.4 – 1.3mm clayer sand layer between 0.4 - 1.1m and weathered basement between 1.1 0 14.0m. The output from the electrical survey data were used to assess the prospective risk of groundwater pollution and define the protective properties of geologic layers as well as pinpointing suitable areas with poor, moderate, and high aguifer protective capacity rating.

Keyword: Abeokuta, aquifer, bulk-density, exploration, groundwater and topsoil

Introduction

Groundwater is a crucial commodity for the good fortune of human societies. Quality of groundwater plays major role in the water paucity regions, especially for drinking water supply (Al Hallaq2002). During the recent decades, the groundwater exploitation has dramatically increased

and hence the agricultural use of water has full-grown rapidly, while the amassed concentration of populations in metropolitan area has meant that allencompassing well fields have been developed for metropolitan water supply. These circumstances make the groundwater more easily susceptible to

contamination. In addition, vulnerability is the degree which human environmental systems are likely experience harm due to stress and can be recognized for a stated system and cluster of hazards (Popescu et al., 2008). The contaminants may originate from a rock containing arsenic and contribution from human activities such as: spraving of insecticides, application of agricultural fertilizers, spills and chemical sprays (Liggett and Talwar2009). In addition, evaluation of vulnerability is also influential educational tools for educating public wakefulness of groundwater protection issues (Nowlan2005). In 2002, Foster et al. (2002).thev discovered contamination of groundwater take place when the capacity of contaminants on the ground or leachates generated by urban and human activities is not properly managed and definite components surpass the natural diminution capability of and cover layers. subsoil Thus. vulnerability investigation has become a vital tool for groundwater protection and environmental management (Vias et al. 2005, Focazio et al., 2002).

The availability of water at proper depth for suitable plant evolution is of great importance to farming system. For this reason, in order to provide an adequate water supply for growing crop on cultivated farmland, knowledge of soil moisture content as well as monitoring of its changes is highly important. Soil moisture content has important applications in soil ecology, hydrology, waste water infiltration, meteorology and agriculture (Pan et al, 2012). Thorough study of soil moisture

dissemination within the soil profile to evaluate soil water availability have strong effects on plant physiology (Brillante et al, 2015, Piccolo and Mbagwu, 1999; Ereje et al.,2005). Electrical resistivity method has various important applications in hydrological science and related field investigations (Golekar et al, 2014, AbdelAal et al., 2010).

Geo-electrical resistivity method is one of geophysical methods that can be used to map and characterize spatial and temporal variations of soil physical properties (Sudha et al., 2009, Aizebeokhai, 2014). Electrical resistivity method is found to be cheap, quick, easy to operate, quick and reliable tool to classify and easy prediction of physical properties of soil (Dafalla and Alfouzan, 2012) and to identify between fresh and saline water zones (Majundar and Pal,2005, Pethkar et al.2001: Aiezebeokhai, 2014). Electrical resistivity method provides a good means of thorough study of vertical water movement in the unsaturated soil zone and helps in assessing the boundary conditions for infiltration modeling (Benderitter and Schott, 1999). Vertical electrical sounding 2D (VES) and electrical resistivity tomography are geo-electrical method to understand subsurface lithology delineate groundwater potential zones (Gracia-Montiel et al, 2008, Golekar et al, 2014). Several researchers have employed the use of VES and 2D ERT in monitoring soil water content (Garcia-Montiel et al, 2008; Michot et al, 2003, et al., 2012) Olayinka Garre Oladunjoye, 2013, Jakalia et al., 2015, Karim et al., 2013, Brillante et al., 2015,

Besson et al., 2004, Agunbiade and Ojoawo, 2014, Rings et al., 2008). - using combined method of vertical electric sounding and laboratory experiments on estimation of some selected physical parameters of soil to effectively characterize the topsoil of the cultivated farmland at FUNAAB

Study area description

The study area is an agricultural farm and training farm managed by Directorate of Farm(DUFARM), Federal University University of Agriculture, Abeokuta (FUNAAB). The study area is agricultural farm located within latitude 7°13'N to 7°15'N and longitude 3°24'E to 3°26'E Southwestern part of Nigeria as shown in Figure 1. Abeokuta experiences two local climates which are rainy and dry seasons. The wet season spin from March-October while the dry season occurs November-March when the area is under the influence of North - Eastern winds (Badmus and Olatinsu, 2010). The amount of rainfall varies between 750mm-1000mm in the rainy season and 250mm-500mm during the dry season (Akanni, 1992). Abeokuta is characterized by an undulating topography with elevation value ranging from 100-400m above sea level (Akanni, 1992, Oloruntola and Adeyemi, 2014). The mean monthly temperature ranges between 25.7°C in July to 30.2°C in February with the mean annual temperature of 26.6°C.

Geology of the study area

The study area falls within the Basement Complex of south western Nigeria. The Basement Complex rock comprises of

folded gneiss, schist quartzite, granite and amplubolite/mica-schist (Jones and Hockes, 1964). Abeokuta belongs to the stable place which was not subjected to intense tectonics in the past (Ufoegbune et al., 2009). The northern side of Abeokuta is characterized by pegmatitic uncertain by granite while the southern part enters the transition zone with the sedimentary formation of the eastern Dahomey Basin. But the problem about pinpointing high productive aguifers in several parts of is a great task because Abeokuta Abeokuta lies within the Basement Complex (Figure 2) of Southwestern Nigeria. These rocks are of Precambrian age to early Palaeozoic age and prolong from the north-eastern part of the Ogun state (which Abeokuta belongs) on the trot southwest ward and dipping towards the coast (Ako, 1979). The different rock has various hydrogeologic characteristics. The underground faulting system is minimal and this has contributed to the problem of underground water occurrence in this area. The southern part of Abeokuta goes into the transition zone with the sedimentary basin. characterized by impartially satisfactory hydro-geological history. Also, western part of Abeokuta is regarded as by granitic gneiss which is fewer porous (Key, 1992). Thus, this area is greatly problematic and it is predisposed to lowslung yield groundwater supply. Abeokuta terrain was characterized to have two kinds of landforms.; knolls of granite, other rocks of the basement complex and nearly flat topography sparsely distributed low hills. Abeokuta is sapped by rivers, Ogun and

Oyan which are the two major rivers and many small streams

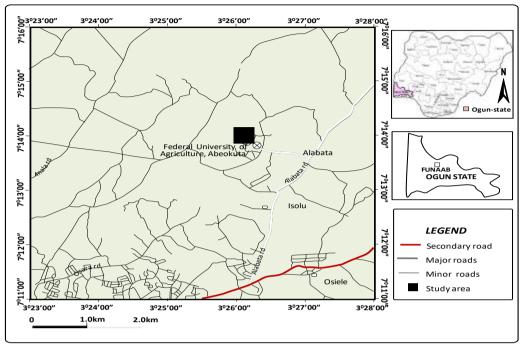


Figure 1: Location Map of the Study Area

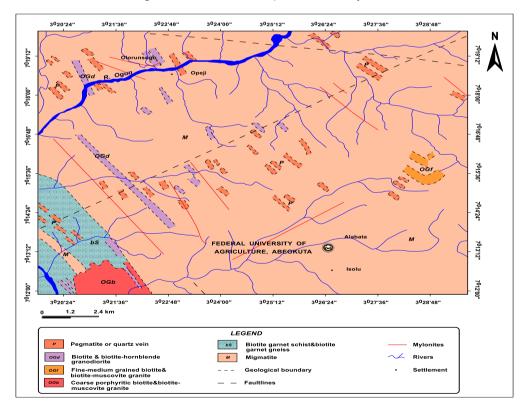


Figure 2: Geological map showing the rock type that underlies the study area (adapted from NGSA 2009)

Methodology-VES survey

In this study, the following equipment were used in carrying out this research: using campus Tigre tetrameter; four steel electrodes (two electrodes used as the potential electrodes and the other two electrodes for the current electrodes); four cable reels with metal clips attached to the wires; two measuring tapes; and hand held Global Positioning System (GPS). The geologic features observed reconnaissance visits to the site included flood plain and rock outcrop. Electrical resistivity method which employs the Schlumberger electrode configuration with maximum current electrode separation (AB/2) of 110 m was used in acquiring VES data at seasonally cultivated farmland using campus Tigre tetrameter. Specified amounts of electric current was injected into the ground through a pair of current electrodes and then with the aid of potential electrodes. the potential measure difference between two points at the surface caused by the flow of the electric current in the subsurface. From the measured current (I) and the voltage (V) ensuing values. the resistivity determined. Figure 3 shows a simplified diagram of the Schlumberger array. The GPS coordinates of each sounding point was captured and recorded against each point.

From the Schlumberger configuration, both current and potential pairs of electrodes have mutual mid-point, but the separation distances in the middle of adjacent electrodes differ. Assuming that the separations of the current and potential electrodes are given as *L* and *a*, respectively (Lowrie, 2007).

The Schlumberger array employed for VES Survey was done with a maximum electrode separation of 110m. For the VES Survey, the resistivity data obtained on the field and the electrode separation (AB/2) of 55m were partially curve matched and plotted against each other on a bilogarithmic scale before being computer iterated with WINRESIST software with a R.M.S error less than 5.0 in order to obtain the true resistivity and layer parameter of depth. The iterated aeo-electric parameters obtained were used to generate geo-electric sections layers. The iterative optimization method make an effort to reduce the dissimilarities occurred between the measured resistivity values and calculated resistivity values with the inversion model. The accuracy of fit in expressed in terms of RMS error (Loke and Barker, 1996).

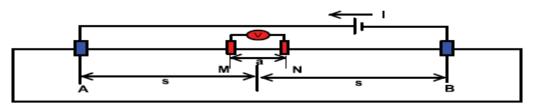


Figure 3. Diagram of Schlumberger Array (Lowrie, 2007)

Aquifer protective capacities and evaluation

The foremost link between the vulnerability of aquifer and electrical conductivity built on the significant principal known as clay content of the material which is related to hydraulic conductivities of soils (Schefferand Schachtschabel 1984) and impacts on the electrical resistivity or conductivity. High clay content in general correlates with resistivity's and hydraulic conductivities values becoming low while increasing clay content leads to reduction on electrical resistivity or to amassed electrical conductivity (Sen et al. 1988). Aguifer Vulnerability Index (AVI) was adopted in this study which is broadly used to evaluate the aquifer vulnerability to surface contaminants (Van Stempvoort et al., 1992). This approach enumerates groundwater vulnerability by hydraulic resistance to vertical flow of waste water through the unsaturated layers. Therefore, hydraulic resistance which (C) is Integrated equivalent to Electrical Conductivity (IEC) also known as Conductance Longitudinal (S)can be obtained usina equation 1 (Van Stempvoort et al., 1992)

$$S = IEC = \sum_{i=1}^{n} \frac{h_i}{\rho_i}$$

Where $h_{i,}$ and ρ_{i} are thickness and resistivity respectively.

The Total Transverse Unit Resistance (TTUR), is defined mathematically as given by equation 2

$$TTUR = \sum_{i=1}^{n} h_i \rho_i$$
 2

Using equation 2, the Average Longitudinal Resistivity (ALR) for VES curve is given by equation 3,

$$\rho_L = \frac{H}{IEC} = \frac{\sum_{i=1}^{n} h_i}{\sum_{i=1}^{n} \frac{h_i}{\rho_i}}$$

The Average Transverse Resistivity (ATR) can be calculated using equation 4;

$$\rho_{t} = \frac{TTUR}{H} = \frac{\sum_{i=1}^{n} h_{i} \rho_{i}}{\sum_{i=1}^{n} h_{i}}$$

Therefore, the Anisotropy is defined as the square root of ratio of Average Transverse Resistivity (ρ_t) to Average Longitudinal Resistivity (ρ_t) for the VES curve given by equation 5

$$\lambda = \sqrt{\frac{\rho_t}{\rho_l}}$$

The classification of the protective capacity of the overburden into excellent, very good, good, moderate, weak and poor protective capacity zones by Oladapo et al., 2004; Oladapo and Akuntorinwa, 2007; Abiola et al., 2009 was adopted in this study (Table 1)

Table 1: Longitudinal conductance /protective capacity rating Abiola et al., 2009

Longitudinal	Protective Capacity
Conduction	Rating
< 0.1	Poor
0.1 – 0.19	Weak
0.2 - 0.69	Moderate
0.7 - 4.9	Good
5 -10	Very Good
>10	Excellent

Soil samples collection

Soil samples were collected along each resistivity profile with four (4) samples on each profile laid within cultivated farmland in FUNAAB with the use of soil auger together with core samplers. For the purpose of determinations of soil moisture contents, soil samples were collected at the depths of 0.5, 1.0, 1.5 and 2.0m at the interval of 0.5m. The collected soil samples were analyzed at the Soil Science laboratory of Federal University of Agriculture Abeokuta, Nigeria. Physical parameters of interest were; soil pH, soil temperature, particle size distribution, porosity, soil moisture content, water holding capacity, soil hydraulic conductivity and bulk density. Hydraulic conductivity of soil was measured using the constant head method based on Reynelds and Elrick, 2002. pH meter was used to determine the value of pH each soil sample based on ASTM G51-Q5 standard while the soil temperature was measured by put in two sensors into the soil to determine temperature values. Soil moisture content was determined using the weight loss method based on ASTM porosity 04959-07 classification was standard. Textural carried out using the USDA textual classification. The determination of bulk density was carried out by gravimetric soil cure method with the particle density assumed to be 2.65 g/cm³. The porosity (P) in percentage % was calculated using equation 6.

$$P = 1 - \frac{BD(g/cm^3)}{2.65(g/cm^3)}$$

Where p and BD are porosity and Bulk density respectively

Results and discussion

Results of Vertical Electrical Sounding (VES)

The application and analysis of Vertical Electrical Sounding (VES) measurements carried out within the cultivated farm land at Federal University of Agriculture Abeokuta allowed both thickness and resistivity of the aguifer to be achieved. The result of VES shows the variation in the apparent resistivity of the layers, thicknesses (h) and depth of overburden on the aquiferous were presented in Figures 4 and 5. The study area is underlain by four layers of different lithologies. Two resistivity sounding curve types were obtained; VES 2, VES 3, VES 4, VES 5 and VES 6 are H-types ($\rho_1 > \rho_2 <$ ρ_3) while VES 1 has KH type($\rho_1 < \rho_2 >$ $\rho_3 < \rho_4$). The percentage frequency of the curve types are 83.33% for H-type and 16.67% for KH type. The range of the values of thicknesses of each layer for all the six VES points are given as: Topsoil ranges between 0.5 - 1.3 m, clayey sand layer between 1.1 – 11.9 m and weathered basement between 1.1 - 14.0 m as presented in Table 2. The topsoil resistivity values ranged from $78.0 - 1094.0 \Omega m$ while the layer thickness ranged from 0.5 -1.9 m. The range of resistivity values obtained for the topsoil for VES 1, 2, 5 and 6 were between $78.0 - 349.0 \,\Omega m$ which is within that of sandy-loam soil class, while VES 3 has topsoil resistivity values of 1094.0 Ωm. The variations in topsoil resistivity could be as a result of different degree of compaction due to reworking activities at the farmland.

The clayey sand layer resistivity values range from $110.0 - 275.0 \Omega m$ with thickness values from 1.1 - 11.9 m. The weathered basement resistivity values lie between $19.0 - 274.0 \Omega m$ while the laver thickness varies between 1.1 - 14.0 m. The fractured basement has resistivity values ranging between $160.0 - 893.0 \Omega m$. The fractured basement columns were delineated beneath VES 1, 2, 3 and 4 while basement partially fractured was delineated beneath VES 5 and 6.

The cross section between VES 1 and 2 that functions as entrances to the cultivated farm land in FUNAAB as shown in Figure 6. Figure 6 reveals that the study underlain area is bν four lavers representing the topsoil, clavey sand, sandy clay and fractured basement. The first two units in the section is the overburden with resistivity and thickness values ranging from $78.0 - 349.0 \Omega m / 0.5$ - 1.1m and 26.0 - 98.0 Ω m/1.1 - 5.7 m respectively. The lowermost fractured basement resistivity values ranged from $160.0 - 475.0 \ \Omega m$. The VES results show that the topsoil of the study was made of relatively thin sandy loam and sandy clay loam. Furthermore, lateral and vertical variation in depth and thickness of the subsurface layers was revealed with the help of geo-electric sections. The geo – electric sections showed that the study area is underlain by geologic (lithological) sequence consisting of the topsoil, thin clayey sand, sandy clay and fractured basement.

The geo - electric section across the profiles within the farmland is presented in Figure 7. The resistivity values of the topsoil ranges from 112.0 - 1094.0 Ωm while the weathered basement ranges from $18.0 - 274.0 \,\Omega m$. The clay with resistivity value less than 30.0 Ωm in both VES 5 and 6 are similar while that of VES 3 and 4 (clayey sand) are also identical in nature. The fractured basement resistivity value varies from 181.0 - 893.0 Ωm. The topography of this section is uneven with thickness range of 3.9- 14.0 m and depth range of 4.8- 15.3 m. The basement is much closer to the surface with a depth of 4.8 m occurring at offset 7.0 m towards the east axis. The fractured basement model resistivity is less than 500 Ωm in VES 5 and 6 justifying the fractured nature and incompetent (Ainaet al., 1996). resistivity values of fractured layer beneath VES 3 and 4 is $>500 \Omega m$. The highest resistivity value of fractured layer with 893.0 Ωm occurs at VES 3.

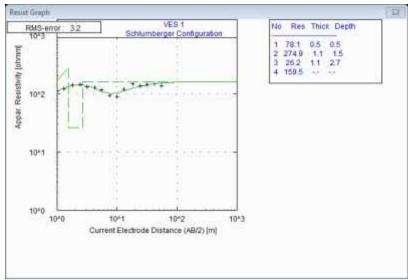


Figure 4: Resistivity field curve of VES 1

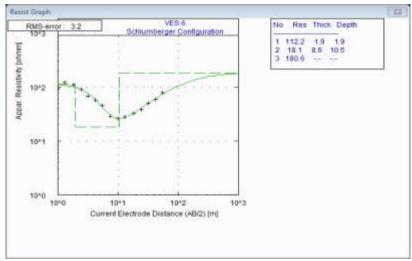


Figure 5: Resistivity field curve of VES 6

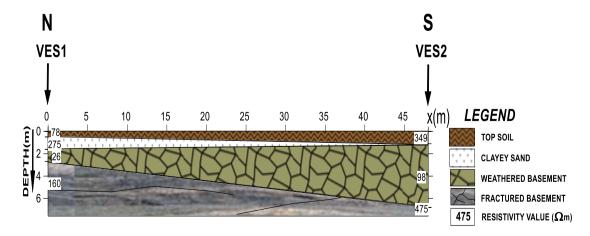


Figure 6: The Geo-electric Section of VES 1 and 2

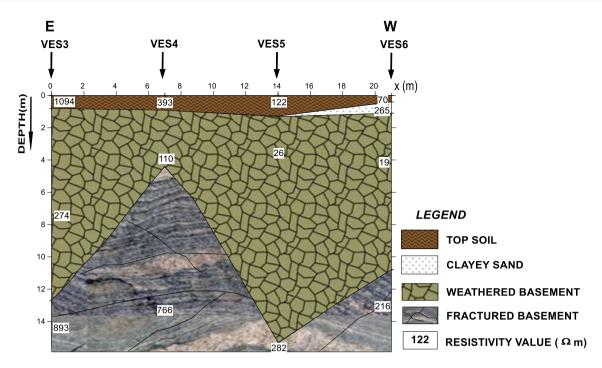


Figure 7: The Geo-electric Section of VES 3, 4, 5 and 6

Table 2: Showing the summary of the geo-electric parameter of VES curve obtained

Station	Layer	Resistivity	Thickness(m)	Depth(m)	Curve	Reflection	Probable	
	No	value (Ωm)			Type	Coefficient	Lithology	
VES 1	1	78	0.5	0.5			Top soil	
	2	275	1.1	1.6	KH	0.72	Clayey sand	
	3	26	1.1	2.7			Clay	
	4	160	-	-			Fractured basement	
VES 2	1	349	1.1	1.1			Top soil	
	2	98	5.7	6.8	Н	0.65	Clay	
	3	475	-	-			Fractured basement	
VES 3	1	1094	0.8	0.8			Top soil	
	2	274	11.9	12.7	Н	0.53	Clayey Sand	
	3	893	-	-			Fractured basement	
VES 4	1	393	0.9	0.9			Top soil	
	2	110	3.9	4.8	Н	0.75	Clayey Sand	
	3	766	-	-			Fractured basement	
VES 5	1	122	1.3	1.3			Top soil	
	2	26	14.0	15.3	Н	0.83	Clay	
	3	282	-	-			Partially Fractured	
							basement	
VES 6	1	112	1.9	1.9			Top soil	
	2	18.1	8.6	10.5	Н	0.82	Clay	
	3	180.6	-	-			Partially fractured	
							basement	

Evaluation of aquifer vulnerability

Aquifer protective capacity (APC) is the capability of the overburden unit to slow down and sifter seep into ground surface leaching fluid from entering into the aquiferous unit (Olorunfemi et al., 1999). The aquifer protective capacity characterization is based on the values of the Integrated Electrical Conductivity (longitudinal unit conductance (S)) of the overburden rock units in the cultivated farmland at FUNAAB. The geoelectric parameters were calculated using equations 1, 2, 3 and 4. The results of geoelectric parameters were presented in Table 3. The longitudinal unit conductance (S) values obtained from the study area range from 0.04 to

0.55 mhos as presented in Table 3. Clayey overburden with reasonably high longitudinal conductance provides safeguard to the underlying aquifer. The portion having conductance values less 0.1 mhos covered about 83.33 % of the study area and was classified as zone of poor protective capacity; the value between 0.2 and 0.69 mhos covered about 16.67% and was categorized as of moderate protective capacity.

VES 1, 2, 3, 4 and 6 falls within the poor protective zones and are prone to surface and near-surface leachate, while VES 5 falls within the moderately protected zones, the aquifer is properly secure from leachate seep into fluids.

Table 3: Aquifer Characteristics for all the VES station

VES	IEC	IEC	IEC	IECTotal			
STATION	1(S)	2(S)	3(S)	(S)	TTUR	ρ_{l}	$ATR(\rho_T)$
1	0.0064	0.0040	0.0423	0.052718	370.1	51.21	137.074
2	0.0032	0.0582	-	0.061315	942.5	110.9027	138.603
3	0.0007	0.0434	-	0.044162	4135.8	287.57	325.653
4	0.0023	0.0355	-	0.037745	782.7	151.0133	142.309
5	0.0107	0.5385	-	0.549117	522.6	27.862	108.875
6	0.0100	0.0366	-	0.067656	1366.0	155.19	130.095

Soil analysis

result of analysis of physical parameters of the soil samples from the cultivated farmland in FUNAAB are presented in Table 4. The values of average bulk density (g/cm³) ranged from $0.3846 - 1.3960 \text{ g/cm}^{3 \text{ w}}$ with mean 1.0218. It was observed that obtained bulk density values for the analysed soil samples did not reach the critical bulk density values for plant growth according to Jones, 1983. The evaluated porosity values of soil samples on all profiles ranged from 49.2 % - 85.5% with mean value of 61.75%. The calculated values of saturated hydraulic conductivity

ranged from 0.0042 cm/s to 0.0073cm/s. The variability of soil hydraulic conductivity within a particular soil type may be due to different amount of macrospores and pore continuity in the analyzed soil samples (Cameira et al, 2003, Ahuja et al, 1984). The soil textural class according to USDA textural triangle classification of all profiles belongs to sandy loan soil. It was further observed that there is significant increase in soil moisture at 1.5 – 2.0 m depth. This corresponds with the transition from high resistivity near surface layer to relatively low resistivity weathered layer.

Conclusion

The detailed characteristics of geo-electric section accurately delineated based on the resistivity comprehensive VES data interpretation using both major and minor geo-electric parameters and along with the analysis of some selected physical parameters of soil samples from the cultivated farm land. The geo-electric survey revealed that the values of resistivity, thickness and depths from the sounding curve ranged between 19 Ωm -1094 Ωm. 0.4 m - 14 m and 0.4 m - 15.3 mrespectively. The reflection coefficient ranged between 0.5 – 0.83. The analysis of results obtained from the aguifer protective (APC) reveals that VES 1, 2, 3, 4 and 6 were classified as zone of poor protective capacity which represents 83 percent of the total VES points while VES 5 belongs to zone of moderate protective capacity. Based on the standard textural classification of soil all the soil samples collected along the profiles of VES point belongs to sandy loan soil. Therefore, the study has succeeded in delineating groundwater potential of the cultivated farmland in FUNAAB and evaluating the groundwater vulnerability using combined method of vertical electric sounding and laboratory experiments on estimation of some selected physical parameters of soil to effectively characterize the topsoil.

References

Abdel-Aal E. A., Rashad M. M and Mohamed R. M. (2010). Gelation rate of silica nanoparticles at different super saturation with and without ammonium fluoride

additive. International Journal of Nanoparticles, 3(2): 192 - 203

- Abiola, O., Enikanselu, P.A. and Oladapo, M.I. (2009). Groundwater Potential and Aquifer Protective Capacity of Overburden Units in Ado-Ekiti, Southwestern Nigeria. *International Journal of Physical Sciences*, 4: 120-132.
- Agunbiade, O.J. and Ojoawo, A.I. (2014). Evaluation of effective soil depth and heterogeneous subsurface mapping using electrical resistivity geophysical method to aid out palm plantation planning at Ile-Oluji, Ondo State, Nigeria. Am. J. of Scientific and Industrial, Research, 6(3): 58-68
- Ahuja, I. R, Namey, J.W., Green, R. E and Nielson, D.R. (1984) Macroporosity to characterize spatial variability of hydraulic conductivity and effects of land management. Soil Science Society of American Journal 48: 699-702
- Aina, A, Olorunfemi, M.O, Ojo, J. S. (1996). An integration of aeromagnetic and electrical resistivity methods in dam site investigation. Geophysics 61(2):349-356.
- **Aizebeokhai, A.P. (2014).** Assessment of soil salinity using electrical resistivity imaging and induced polarization methods. African Journal of Agricultural Research, 9(45): 3369 3378. DOI: 10.5897/ajar2013.800
- Al Hallaq AH (2002). Groundwater Resources Depletion in Gaza Strip: Causes and Effects. Ain Shams University, Cairo (In Arabic) Unpublished Ph.D. dissertation.
- **Akanni, C.O (1992).** Relief, drainage, soil and climate of Ogun state in maps (pp -20).In Onakomaiya, S.O, Oyesiku, O.O and

- Jegede, F.J(Eds)published by Rex Charles publication.
- **Ako, B. D. (1979).** Geophysical prospecting for groundwater in part of southwestern Nigeria PhD Thesis, University of Ife, Ile-Ife. 371p
- Badmus B. S. and Olatinsu O. B. (2010).

 Aquifer characteristics and groundwater recharge pattern in a typical basement complex, Southwestern Nigeria African Journal of Environmental Science and Technology. 6: 328 -342
- Benderitter, Y and Schott, J. J. (1999). Short-time variation of the resistivity in an unsaturated soil: The relationship with of the resistivity in an unsaturated soil: The relationship with rainfall. Eur. Journal of Environment and Engineering Geophysics, 4: 37 49.
- Besson, A., Cousin, I., Samouelian, A., Boizard, H., Richard. G. (2004). Structural heterogencity of the soil filled layers as characterized by 2D electrical resistivity surveying. Soil and Tillage Research. 79: 239-249
- Brilliante, L, Mathiien, O., Bois, B. Van Leeuwen, C. and Leveque J (2015). The use of soil electrical resistivity to monitor plant and soil water relationship in Vineyards. Soil Research, 1: 273-286. DOI:10.5194/soil-1-273-2015.
- Cameira, M.R, Fernando, R.M and Pereira, L.S. (2003). Soil macropore dynamics affected by Tillage and Irrigation for a silty loam alluvial soil in Southern Portugal. Soil Tillage Research, 70:131-140
- Dafalla, M. A. and Al Fouzan F. (2013).

 Predicting reliable soil profile using electrical resistivity survey,

- Coutinho and Mayne (ed) Taylor and Francis group London pp971 -976
- Eneje, R.C, Ogbenna, C.V. and Nuga, B.O. (2005). Saturated hydraulic conductivity. Water stable aggregates and soil organic matter in a sandy loam soil in Ikwuano LGA of Abia State. Journal of Agriculture, Food, Environment and Extension 4(1): 34-37
- Focazio, M.J., Reilly, T.E., Rupert, M.G., Helsel, D.R., 2002. Assessing Ground-Water Vulnerability to Contamination: Providing Scientifically Defensible Information for Decision Makers.US Geol. Surv.Circular 1224.
- Foster S, Hirata R, Gomes D, D'Elía M, Paris M (2002). Groundwater Quality Protection A guide for water utilities, municipal authorities and environment agencies. The World Bank, p. 103
- Garcia-Montiel, D.C., Coe M.T., Cruz M.P., Ferreira J.N., Da Silva E.M., and Davidson E.A. (2008). Estimating seasonal changes in volumetric soil water content at landscape scales in a savanna ecosystem using two-dimensional resistivity profiling. *Earth Interact.* 12(2):1–25.
- Garre,S, Gunther, T, Diels, J and Vanderborght, J. (2012). Evaluating experimental design of ERT for moisture monitoring in contour hedgerous intercropping systems, Vadose Zone Journal.11: 14 30PP DOI:10.2136/VZJ 2011.0186.
- Golekar, R.B., Baride, M.V and Patil, S.N. (2014): ID resistivity sounding geophysical survey by using Schlumberger electrode configuration method for groundwater exploration in catchment area of Anjani

- and Jhiririver, Northern Maharashtra (India). Journal of Spatial Hydrology. 12(1): 22-35
- Jakalia, I.S., Aning, A.A., Preko, K., Sackey, N. and Danour, S.K. (2015). Implications of soil resistivity measurements using the Electrical Resistivity method. A case stud of a Maize farm under different soil preparation modes at KNUST Agricultural Research Station Kumasi. Int. J. of Scientific and Technology Research, 4(1): 9-18.
- Jones, H.A. and Hockey, R.D. (1964). The geology of southwestern Nigeria, Geological survey of Nigeria Bulleting, 31:22-24.
- Karim, H.H., Al-Neami, M.A. and Mohammad, W.M.Y. (2013). Soil site investigation using 2D Resistivity. A guide for geotechnical soil profiles. International Journal of Electrochemical. Sciences, 7:3191-3204.
- **Key, R. (1992).** An introduction to the crystalline basement of Africa In Wright E.andBurgass, w. (Eds)Hydrogeology of crystalline basement aquifers in Africa, Geological society of special publication London, 66:29-57
- **Liggett J.E. Talwar S. (2009).** Groundwater vulnerability assessments and integrated water resource management. Watershed Management Foster Bulletin 13(1):18–29
- Loke, M.H. Lane, J and John, W. (2004). Inversion of data from electrical resistivity imaging surveys in water covered areas. Exploration Geophysics 35(4): 266-271.
- **Loke M. H. and Barker, R. D. (1996).** Practical techniques for 3D resistivity surveys and data inversion

- **Lowrie W. (2007).** Fundamentals of Geophysics. Cambridge University press second edition
- Majumdar, R.K. and Pal, S.K. (2005). Geoelectric and borehole lithology studies for groundwater investigations in alluvial aquifers of Munger district, Bihar. Journal Geological Society of India, 66: 463-474
- Michot, D., Benderitter, Y. Dorigny A., Nicoullaud, B. King, D. and Tabbagh, A. (2003). Spatial and temporal monitoring of soil water content with an irrigated corn crop covers using surface electrical resistivity tomography. Water Resources Research, 39(5): 1138 -1150, DOI: 10.1029/2002 WR001581.2003
- Nowlan L (2005). Buried treasure:
 Groundwater permitting and pricing in
 Canada.Walter and Duncan Gordon
 Foundation, with case studies by
 Geological Survey of Canada, West Coast
 Environmental Law, and Sierra Legal
 Defence Fund. p 118
- Oladapo, M.I., Mohammed, M.Z., Adeoye, O.O. and Adetola, B.A. (2004). Geoelectrical Investigation of the Ondo State Housing Corporation Estate, Ijapo Akure, Southwestern Nigeria. *Journal of Mining and Geology*, 40: 41-48. http://dx.doi.org/10.4314/jmg.v40i1.18807
- Olayinka, A.I. and Oladunjoye, M. A. (2013).

 2-D Resistivity Imaging and determination of hydraulic parameters of the vadose zone in a cultivated land in Southwestern Nigeria. Society of Exploration 13: 245-259
- Olorunfemi, M.O., Ojo, J. S. and Akintunde, M.O. (1999). Hydrogeophysical Evaluation of the Groundwater Potentials of the Akure

- Metropolis. *Journal of Mining and Geology*, 35: 207-228.
- Oloruntola, M. O. and Adeyemi, G. O. (2014).

 Geophysical and Hydrochemical evaluation of groundwater potential and character of Abeokuta Area, Southwestern Nigeria. Journal of Geography and Geology, 6(3): 162-177 DOT: 10.5539/jgg. V6N3P162...
- Pan, W, Boyles, R.P, White, J.G. and Heitman, J. H. (2012): Characterizing soils physical properties for soil moisture monitoring within the North Carolina Environment and climate observing network. Journal of Atmospheric and Oceanic Technology, 29: 933-943. DOI:10.1175/JTECH-D-11-00104.1.
- Pethkar, A. V. Gaikaiwari R. P. and Patnikar. K.M. (2001). "Biosorptive removal of contaminating heavy metals from plant extracts of medicinal value" Current Science, 80:1216-1219.
- Popescu IC, Gardin N, Brouyére S, Dassargues A (2008). InModelCARE 2007 Proceedings, Calibration and Reliability in Groundwater Modelling. In: Refsgaard JC, Kovar K, Haarder E, Nygaard E(eds) Groundwater vulnerability assessment using physically based modelling: From challenges to pragmatic solutions. IAHS, Denmark Publication No. 320
- Rings, J., Huisman, J. A., &Vereecken, H. (2010). Coupled hydrogeophysical parameter estimation using a sequential Bayesian approach. *Hydrology and Earth System Sciences*, 14: 545–556.

- Scheffer F, and Schachtschabel P (1984). Lehrbuch der Bodenkunde. EnkeVerlag, Stuttgart
- Sen P. N, Goode P. A, and Sibbit A (1988).

 Electrical conduction in clay bearing sandstones at low and high salinities.

 Journal of Applied Physics, 63:4832 4840
- Sudha, K, Israil, M., Mittal, S. and Rai, J. (2009). Soil Characterization using electrical resistivity tomography and geotechnical investigation Journal of Applied Geophysics, 67: 74-79. DOI: 10.1016/j.jappgeo.2008.09.012
- Ufoegbune, G.C, Lamidi, K. I, Awoweso, J. A, Eruola, A. O Idowu, O.A and Adeofun, C.O (2009). Hydrogeological characteristics and groundwater quality assessment in some selected communities of Abeokuta, Southwestern Nigeria. Journal of Environmental chemistry and Eco toxicology 1(1):010-022.
- Vias, J. M., Andreo, B., Perles, M. J., Carrasco, F., Vadillo, I., Jim'enez, P. (2006). Proposed Method for Groundwater Vulnerability Mapping in Carbonate (Karstic) aquifers: the COP method: Application in Two Pilot Sites in Southern Spain, Hydrology Journal. 14(6): 1-14
- Reynolds, W.D, Elrick, D. E. (2002). Constant head soil core (tank) method. In Dane, J.H, Topp, G.C. (Eds) methods of soil analysis, part 4, physical methods, Wisconsin, pp 804-808.