The Remaining Storage and Rate of Siltation of Mairuwa Dam, Funtua, Katsina State, North-western Nigeria

¹ Salawu, A.O., ^{*2}Musa, O. K., ³Adama, B.O.

¹Department of Geology, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
²Department of Geology, Federal University, Lokoja, Kogi State, Nigeria
³Department of Geology and Mining, Nasarawa State University Keffi, Nasarawa State, Nigeria
*Correspondence: kizi.musa@gmail.com

Abstract

Mairuwa impounded reservoir (Dam) which was constructed in 1970, had an initial installed capacity of 5.5 million cubic meters and it is the main source of piped water supply to Funtua and its environs for the purpose of irrigation farming and potable water supply. The volume of rainfall in the drainage basin is 102,259,006m³. Runoff coefficient of the area is 0.23. Volume of total runoff is 23,519,571m³. Total volume of material eroded from the drainage basin is 4,703m³/a. After 50 years of impoundment, continuous siltation caused by sediment being deposited annually is affecting its usefulness to the people. In order to determine the remaining storage of the reservoir, there is need to study the reservoir's bathymetry using boat, satellite navigator and metric tape with a heavy stone attached to it. Results of this measurement show that as at 2020, the remaining storage of the reservoir is 1,944,000m³ representing 35% of the installed capacity. The rate of siltation is 349,920m³/y and loss in volume is 3,556,000m³ representing 65% of the total storage. The rate of erosion in the drainage basin of 102 km² is calculated to be 0.45mm/a. This is far higher than the world average of 0.088mm/a. The reservoir will be completely silted up if preventive measures are not taken. This will result to inadequate supply of piped water to Funtua and Environs.

Keywords: Dam, Impounding Reservoir, Siltation, Rate of Erosion.

1.0 INTRODUCTION

Impounded reservoirs are pivotal to the growth of any economy; they play a major role in the generation of electricity, irrigation farming, potable water supply, flood control and recreational purposes. Water supply to Funtua and its environs which is mostly dependent on supply from the Mairuwa Dam has been grossly inadequate. The amount of water pumped is insufficient to meet the increasing water demand. The residents of Funtua town rely mostly on hand dug wells, boreholes and rain harvesting. Yields from irrigated farms are often poor as a result of inadequate water supply.

At the United Nations Environment Programme International conference on fresh water ((UNEP, 2001), it was reported that many of the world's reservoirs upon which billions of people depends for drinking water and food production, are suffering significant reductions in storage capacity as a result of sedimentation. These sediments are composed of eroded materials of different shapes and sizes carried by streams or rivers (Ritter, 2006). Sediments generated within a catchment area of a river are subsequently moved from a drainage basin to be deposited in flood plains; in storage reservoirs (Oyegun, 1980). Globally, impounded reservoirs are being threatened by erosion within its drainage basin.

Reports from Graf (1984); Fan and Morris, (1992): In Althaus and De Cesare, (2006), sediment deposition in reservoirs leads to loss of water storage. According to White (2000), the global rate of erosion is 0.088 mm/year with the global distribution of the rate of loss of storage varying considerably. China and India are losing 2.3% and 0.5% respectively of storage capacity annually because of the low forest cover and high erosion, but the annual loss rates in Japan and Southeast Asia are only 0.15% and 0.3% respectively due to high forest cover and relatively low sediment yield.

Igiusi (1997) did an earlier assessment on the level of sedimentation in the Kubani Dam. According to A.B.U committee on Protection of the Kubanni Drainage Basin, (2008), there is high rate of siltation of the Kubanni Reservoir which supplies water to Ahmadu Bello University and its environs. They further stated that if necessary actions are not taken, water rationing within the University campus, caused by progressive siltation of the Kubanni impounding reservoir, could possibly begin in 2022 with a complete siltation of the reservoir in year 2059. Baba et al. (2009) also reported the high rate of siltation of the Ahmadu Bello University Farm Lake at Zaria which was constructed in 1966 with original storage capacity of 636,300m². They gave the remaining storage capacity of the reservoir as 349,911m² and calculated rate of siltation between year 1966 to 2009 6,600m³/a, and the rate of erosion in the drainage basin in the same period as 0.559mm/a. Kudamnya et al, (2013) also carried out an evaluation of the remaining storage of the Zaria impounded reservoir and rate of erosion in its drainage basin.

According to Ofoezie (2002) and Etosa (2006) after updating the number of dams in Nigeria, reported that out of 323 dams been constructed nationally, 106 are large dams while 192 are small dams. The Mairuwa Dam is one of these large dams, having a catchment area of 120km², with a crest length of 457m and maximum height of 12m. Therefore, this study is aimed at determining the rate of siltation of Mairuwa Dam with the view to ascertain the remaining storage of the dam, to improved piped water supply to Funtua and its environs.

2.0 THE STUDY AREA

Mairuwa Dam is located within the crystalline hydrogeological province of northern Nigeria, within the Guinea Savannah belt. It is located at 11⁰ 30' to 11⁰ 38'N, and 7⁰ 13' to 7⁰ 21'E, sheet 78 (FUNTUA), Federal Surveys of Nigeria 1: 50,000 (1986). Geological and mineral resources map of Katsina State, Nigeria on scale 1: 500,000 shows that the study area is overlay by granite gneiss and silicified sheared rock of Crystalline Basement Complex, Precambrian to Cambrian in age Nigerian Geological Survey Agency (2006) Figure 1. The study area is accessible through a trunk a road from Zaria through Funtua to Gusau. The dam is about 10km north-west of Funtua. The geology of the Mairuwa Dam is mainly igneous metamorphic (Migmatite Gneiss Complex). The area is underlain by granite gneiss and silicified sheared of Precambrian to Cambrian.

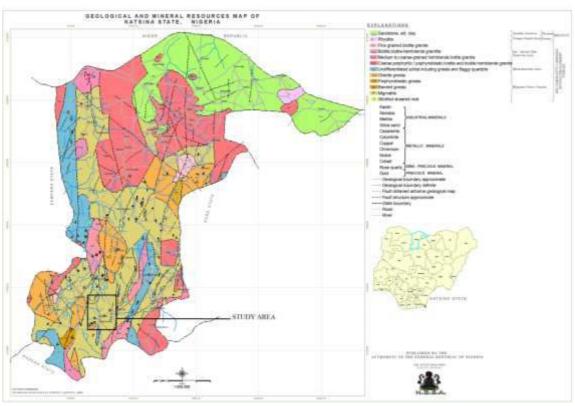


Figure 1: Geological and Mineral Resources Map of Katsina State, Nigeria. Source: Nigerian Geological Survey Agency (2006)

3.0 METHODOLOGY

Measurement of the depth to water table was done during the rainy season at the time the storage reservoir has a maximum capacity, it was measured in meters from a fishing boat with metric tape having a heavy object tied to its end. Points of measurement were located with a Garmin Oregon 550T satellite navigator, with a horizontal accuracy of 3m. Delineation of the edge of the surface water table was located with the Global Positional System (GPS) satellite navigator on the same day with the spillway flowing. The edges of the open water – table was located in the field also. The measurement of the depth in meters for irregular network of points carried out represents the remaining depth of the Mairuwa Dam at a selected sampling point. This procedure was repeatedly applied to

randomly sampling points to determine the depth of the dam at each given point. Depths measured at each of the station points are annotated on the base map on a scale 1:57,500 from which Isobaths were produced based on interpolations between the various depth points. From the bathymetric map produced, the least square method was used to calculate the area of the open water table of the Mairuwa Dam. A graph paper was superimposed on the bathymetric map; the small squares were counted as well as the big squares. Using the average depth, the volume of the remaining storage of the Dam was calculated.

From the base map on a scale of 1:57,500, the watershed was demarcated. A graph paper was thereby imposed and the extent of the drainage basin was drawn from which the area of the

drainage basin was calculated. Using the result of the area of the drainage basin and the depth of annual rainfall around Funtua, the area of the drainage basin was multiplied by the depth of rainfall to get the volume of rainfall in the Drainage Basin.

4.0 RESULT OF MEASUREMENTS OF DEPTH OF STORAGE IN MAIRUWA DAM

Table 1, shows the results of water depth measurements. Table 2, shows the results of location of edge of surface water table. Figure 2, is the Google Earth Image which were used in the demarcation of surface water from dry land. These results were used to plot the map of remaining storage of the Mairuwa Dam as shown in Figure 3. The boundary of the reservoir was located with satellite navigator while the spillway was overflowing. The reservoir boundaries were not easily accessible as they were often separated from the dry land by a few meters wide swampy belt from where water was seeping to the lake. A Satellite map was used to locate all details of the water edge. The results of reservoir boundary location area using graph paper least square method are presented in Table 3.

Figure 2: Satellite image showing Mairuwa Dam (Source: Google Earth, 2012)

Table 1: Results of Measurement of Remaining Storage. Instruments used are Satellite Navigator, Metric Tape and Paddle Canoe measured

Metric Tape and Paddle Canoe measured				
Location	Latitude (N)	Longitude (E)	Elevation of Water (Masl)	Depth Below Level of Spillway (M)
01	11º 35' 10.7"	07º 14' 13.5"	640	0.17
02	11º 35' 12.8"	07º 14' 15.4"	640	0.69
03	11º 35' 11.2"	07º 14' 16.2"	641	0.83
04	11º 35' 09.8"	07º 14' 16.5"	640	0.68
05	11º 35' 08.0"	07º 14' 17.6"	641	1.32
06	11º 35' 07.3"	07º 14' 18.0"	642	0.89
07	11 ⁰ 35' 08.5"	07º 14' 20.0"	641	1.36
08	11 ⁰ 35' 11.3"	07º 14' 19.5"	640	4.80
09	11 ⁰ 35' 13.8"	07º 14' 19.2"	639	5.10
10	11 ⁰ 35' 15.8"	07º 14' 19.1"	640	6.17
11	11° 35' 17.6"	07º 14' 18.1"	640	3.50
12	11° 35' 15.5"	07° 14' 20.1"	641	0.98
13	11 00 10.0 11 0 35' 15.8"	07° 14' 22.9"	641	1.62
14	11° 35' 16.4"	07° 14' 23.4"	642	5.34
15	11° 35′ 13.0″	07° 14° 23.4° 07° 14° 22.5°	641	6.45
16	11° 35' 09.4"	07° 14' 22.3' 07° 14' 24.4"	641	4.15
17	11° 35' 06.3"	07° 14′ 24.4″	640	0.56
18	11° 35′ 04.6″	07° 14° 24.4° 07° 14° 25.2°	642	0.53
19	11° 35′ 04.6° 11° 35′ 01.2″	07° 14′ 25.2° 07° 14′ 26.2°	642	0.55
	11° 35′ 01.2″			0.89
20		07 ⁰ 14' 30.2"	641	
21	11 ⁰ 35' 05.0"	07 ⁰ 14' 31.7"	640	5.50
22	110 35' 06.4"	07 ⁰ 14' 33.6"	640	5.40
23	11 ⁰ 35' 10.9"	07 ⁰ 14' 28.2"	641	6.12
24	11 ⁰ 35' 10.6"	070 14' 32.3"	642	5.93
25	11 ⁰ 35' 12.7"	070 14' 31.2"	641	5.85
26	11 ⁰ 35' 15.8"	070 14' 32.7"	639	5.39
27	11 ⁰ 35' 18.4"	070 14' 29.5"	640	5.41
28	11 ⁰ 35' 20.5"	070 14' 27.6"	641	4.83
29	11 ⁰ 35' 20.5"	07º 14' 20.4"	641	0.68
30	11 ⁰ 35' 23.4"	07º 14' 26.3"	642	4.44
31	11 ⁰ 35' 22.0"	07º 14' 25.5"	641	0.83
32	11º 35' 23.2"	07º 14' 29.0"	641	3.66
33	11º 35' 21.4"	07º 14' 27.6"	641	2.51
34	11º 35' 23.9"	07º 14' 30.9"	641	3.12
35	11º 35' 27.0"	11º 14' 32.8"	642	2.42
36	11º 35' 23.1"	07º 14' 31.5"	641	4.72
37	11º 35' 27.1"	07º 14' 28.4"	641	0.93
38	11º 35' 31.6"	07º 14' 31.0"	641	1.49
39	11º 35' 31.3"	07º 14' 35.4"	640	3,43
40	11º 35' 39.4"	07º 35' 37.4"	641	0.68
41	11º 35' 38.9"	07º 14' 41.5"	642	2.11
42	11º 35' 41.4"	07º 14' 43.3"	639	1.59
43	11 ⁰ 35' 40.8"	070 14' 45.4"	641	2.05
44	11 ⁰ 35' 44.5"	07º 14' 45.3"	641	1.36
45	11 ⁰ 35' 44.4"	07º 14' 47.4"	639	0.88
46	11 ⁰ 35' 42.3"	07º 14' 49.0"	640	1.53
47	11° 35′ 40.9″	07° 14' 49.0"	640	0.62
48	11° 35' 40.5"	07° 14' 47.1"	642	1,92
49	11° 35' 39.7"	07° 14° 47.1° 07° 14° 45.8°	641	1.91
50	11° 35' 37.4"	07° 14' 45.8' 07° 14' 37.4"	640	0.71
50 51	11° 35′ 37.4″ 11° 35′ 34.4″	07° 14′ 37.4′ 07° 14′ 46.8″	641	0.71
<u> </u>	11 00 04.4	07 17 70.0	U 1 1	0.00

			, ,	
	440.051.05.5"	070 111 00 7"		
52	11 ⁰ 35' 35.5"	07º 14' 32.5"	640	0.56
53	11º 35' 35.9"	07º 14' 44.4"	640	1.72
54	11º 35' 35.0"	07º 14' 41.0"	641	2.74
55	11° 35' 34.1"	07º 14' 39.8"	641	2.87
56	11 ⁰ 35' 33.1"	070 14' 41.4"	640	2.87
57	11 ⁰ 35' 31.2"	070 14' 43.1"	640	1.56
58	11° 35' 30.6"	070 14' 41.2"	640	3.53
59	11 ⁰ 35' 29.8"	070 14' 39.3"	641	3.81
60	11° 35' 27.6"	07º 14' 38.7"	642	4.14
61	11º 35' 29.0"	07º 14'43.9"	641	0.45
62	11° 35' 26.7"	07° 14' 42.0"	640	3.88
63	11º 35' 25.9"	07° 14′ 44.3″	640	1.54
64	11° 35' 24.3"	07° 14° 44.0° 07° 14° 42.0°	643	1.53
65	11° 35′ 24.3″ 11° 35′ 23.0″	07° 14° 42.9°	642	1.36
66	11° 35' 23.8"	07° 14′ 42.9′ 07° 14′ 40.9″	640	1.46
	11° 35° 23.8° 11° 35° 21.4°	07° 14′ 40.9′ 07° 14′ 43.0 ″	640	
67				0.44
68	11 ⁰ 35' 22.6"	070 14' 40.4"	641	0.30
69	110 35' 24.5"	070 14' 43.9"	641	0.51
70	110 35' 23.4"	07º 14' 37.5"	640	4.50
71	110 35' 22.5"	07º 14' 35.1"	639	5.00
72	11 ^o 35' 19.5"	07º 14' 34.7"	639	5.17
73	11º 35' 18.8"	07º 14' 38.8"	639	4.55
74	11º 35' 17.0"	07º 14' 42.0"	640	0.47
75	11º 35' 15.3"	07º 14' 42.4"	640	1.67
76	11° 35' 13.0"	07º 14' 40.6"	639	3.16
77	11º 35' 09.2"	070 14' 40.0"	639	5.76
78	11° 35' 07.0"	070 14' 39.7"	640	4.99
79	11° 35' 06.6"	070 14' 41.2"	641	5.18
80	11° 35' 08.1"	070 14' 42.0"	640	5.16
81	11 ⁰ 35' 11.0"	07 ⁰ 14' 42.6"	641	5.17
82	11 ⁰ 35' 14.6"	070 14' 43.3"	640	0.17
83	11 ⁰ 35' 12.9"	070 14' 45.6"	640	3.57
84	11 ⁰ 35' 12.3"	070 14' 47.4"	640	3.98
85	11 ⁰ 35' 15.5"	070 14' 49.2"	639	0.74
86	11º 35' 15.1"	07° 14' 51.8"	639	1.44
87	11° 35′ 13.3″	07° 14′ 54.7″	640	1.45
88	11° 35′ 15.1″	07° 14′ 54.0″	640	0.33
89	11° 35′ 11.3″	07° 14′ 54.0° 07° 14′ 56.7″	640	0.25
90	11 35 11.3 11 ⁰ 35' 11.2"	07 14 50.7 07º 14' 54.3"	642	3.19
91	11° 35' 17.2' 11° 35' 07.3"	07° 14′ 54.3° 07° 14′ 51.4°	641	4.09
92	11° 35' 04.4"	07° 14′ 51.4′ 07° 14′ 53.0″	641	4.45
	11° 35' 04.4"	07° 14′ 53.0° 07° 14′ 59.0°	643	
93	11° 35' 04.0 11° 35' 06.3"			1.43
94		07º 14' 59.0"	641	0.36
95	110 35' 01.4"	070 14' 59.7"	642	3.64
96	11 ⁰ 34' 59.0"	070 15' 00.0"	642	3.61
97	110 35' 01.6"	070 15' 02.1"	641	3.37
98	11 ⁰ 35' 06.0"	070 15' 04.6"	640	0.67
99	110 35' 10.7"	07° 15' 00.9"	641	0.21
100	110 35' 03.3"	07° 15' 07.5"	641	1.62
102	11 ⁰ 35' 02.3"	07º 15' 12.1"	642	0.53
103	11 ^o 35' 01.2"	07º 15' 01.3"	640	2.87
105	11º 34' 58.4"	07º 15' 06.6"	641	3.07
106	11º 34' 54.8"	07º 15' 10.6"	641	2.70
107	110 34' 53.7"	07º 15' 14.4"	640	1.38
108	11° 34' 50.3"	07º 15' 14.0"	639	2.15
109	11° 34' 49.8"	07º 15' 16.9"	640	2.15
_				_

- Caratra ot at			114101 1100041000 (2021) 011 1	
440	440.042.50.00	070 451 47 6"	011	4.00
110	110 34' 52.3"	070 15' 17.6"	641	1.93
111	110 34' 55.1"	070 15' 17.6"	641	1.93
112	110 34' 57.4"	070`15' 18.8"	640	1,54
113	11° 34' 57.6"	07º 15' 20.6"	640	1.51
114	11º 34' 54.3"	07º 15' 21.7"	641	1.55
115	11º 34' 51.9"	07º 15' 23.8"	642	0.52
116	11° 34′ 49.3″	07º 15' 19.1"	641	1.52
117	11 ⁰ 34' 46.4"	07º 15' 21.8"	641	05.1
118	11º 34' 47.0"	070 15' 27.1"	640	0.66
119	11º 34' 50.2"	07º 15' 31.2"	640	0.49
120	11 ⁰ 34' 48.5"	070 15' 32.0"	639	0.62
121	11 ⁰ 34' 54.5"	070 15' 27.1"	639	0.53
122	11 ⁰ 34' 52.5"	070 15' 31.2"	640	0.51
123	11 ⁰ 34' 58.8"	070 15' 25.4"	640	0.53
124	11º 34' 57.0"	07º 15' 16.5"	641	0.51
125	11 ⁰ 34' 49.1"	070 15' 17.4"	641	1.81
126	11 ⁰ 34' 46.6"	070 15' 15.9"	641	1.55
127	11 ⁰ 34' 44.1"	070 15' 16.1"	642	0.57
126	110 34' 47.7"	070 15' 14.2"	641	1.72
127	11 ⁰ 34' 45.4"	070 15' 12.9"	640	1.90
128	11 ⁰ 34' 45.6"	070 15' 09.0"	640	0.40
129	11° 34' 47.7"	07º 15' 10.1"	639	2.16
130	11° 34' 46.8"	070 15' 06.2"	639	1.85
131	11º 34' 49.0"	07° 15' 04.5"	641	1.99
132	11° 34' 49.2"	07° 15' 02.2"	641	0.31
133	11° 34' 52.0"	07° 15' 05.3"	642	2.12
134	11° 34' 52.9"	07° 15' 06.4"	642	2.63
135	11° 34' 54.1"	07° 15' 05.7"	641	2.71
136	11° 34' 53.7"	07° 15' 03.9"	641	1.08
137	11° 34′ 52.2″	07° 15' 03.0"	642	2.93
138	11° 34° 52.2° 11° 34° 53.6°	07° 15' 00.0"	641	1.05
139	11° 34° 55.7"	07° 13° 00.0° 07° 14° 56.6°	642	0.95
140	11° 34′ 57.4″	07 14 56.6 07 ⁰ 14' 56.4"	642	2.68
141	11° 34′ 59.4″	07 14 55.4"	640	3.65
142	11° 35' 00.0"	07 14 55.4 07 ⁰ 14' 54.3"	640	2.93
143	11° 33° 00.0 11° 34' 58.7"	07 14 54.3 07 ⁰ 14' 52.2"	642	2.60
144	11° 34′ 57.5″	07° 14′ 52.2 07° 14′ 50.3″	640	0.61
144	11° 34° 37.3° 11° 35° 00.0°	07° 14′ 50.3 07° 14′ 51.1″	641	2.73
146	11° 35' 04.1"	07° 14′ 51.1′ 07° 14′ 50.5″	641	4.82
147	11° 35' 04.1' 11° 35' 05.8"	07° 14′ 30.3° 07° 14′ 49.4″	642	5.08
147	11° 35' 04.6"	07° 14° 49.4° 07° 14° 47.6°	642	4.04
149	11° 35' 04.6' 11° 35' 03.5"	07° 14′ 47.6 07° 14′ 46.4″	641	1.24
	11° 35' 03.5"	07° 14′ 46.4′ 07° 14′ 44.8″	640	
150 151	11° 35' 05.0"	07° 14° 44.8° 07° 14° 44.3°	643	1.65
	11° 35' 05.0 11° 35' 04.7"	07° 14° 44.3 07° 14° 43.5°	642	0.63
152				4.93
153	11° 35′ 06.6″	070 14' 42.1"	641	5.31
154	11 ⁰ 35' 07.3"	070 14' 41.2"	640	5.10
155	11 ⁰ 35' 04.2"	070 14' 40.3"	641	4.54
156	11 ⁰ 35' 00.4"	070 14' 39.7"	641	2.43
157	110 34' 59.0"	070 14' 38.8"	642	1.19
158	110 34' 59.6"	070 14' 34.9"	641	0.86
159	11 ⁰ 34' 59.6"	070 14' 35.0"	641	0.34
160	110 35' 01.4"	070 14' 34.8"	642	4.40
161	110 35' 03.5"	07º 14' 34.3"	642	5.49
162	11º 35' 04.4"	07º 14' 32.9"	642	5.25

Table 2: Results of Location of Surface Water Table Boundary of Mairuwa Dam. Instruments used are Satellite Navigator Measured

used are Satellite Navigator Measured				
S/No	Date of	Cordinates In Satellite	<u> </u>	
	Measureme	Latitude	Longitude	Elevation (M
	nt			Asl)
1	18/07/2011	11 ⁰ 35' 13.1"N	07º 14' 14.7"E	671
2	18/07/2011	11 ⁰ 35' 14.5"N	07º 14' 15.2"E	668
3	18/07/2011	11 ⁰ 35' 18.0"N	07º 14' 16.7"E	651
4	18/07/2011	11 ⁰ 35' 21.8"N	07º 14' 20.3"E	668
5	18/07/2011	11º 35' 21.1"N	07º 14' 20.7"E	666
6	18/07/2011	11º 35' 20.5"N	07º 14' 22.7"E	666
7	18/07/2011	11 ^o 35' 20.22N	07º 14' 24.2"E	667
8	18/07/2011	11 ^o 35' 21.2"N	07º 14' 24.9"E	668
9	18/07/2011	11 ^o 35' 24.4"N	07º 14' 27.4"E	669
10	18/07/2011	11º 35' 26.0"N	07º 14' 27.3"E	664
11	18/07/2011	11º 35' 28.8"N	07º 14' 28.4"E	665
12	18/07/2011	11º 35' 20.8"N	07º 14' 30.4"E	663
13	18/07/2011	11º 35' 32.4"N	07º 14' 30.4"E	658
14	18/07/2011	11º 35' 34.8"N	07º 14' 34.8"E	660
15	18/07/2011	11º 35' 39.8"N	07º 14' 37.4"E	662
16	18/07/2011	11º 35' 42.8"N	07º 14' 38.9"E	661
17	18/07/2011	11º 35' 43.6"N	07º 14' 40.9"E	664
18	18/07/2011	11º 35' 43.1"N	07º 14' 42.8"E	666
19	18/07/2011	11º 35' 44.5"N	07º 14' 42.4"E	667
20	18/07/2011	11º 35' 42.3"N	07º 14' 51.4"E	666
21	18/07/2011	11º 35' 41.5"N	07º 14' 44.5"E	668
22	18/07/2011	11 ^o 35' 39.2"N	07º 14' 50.4"E	670
23	18/07/2011	11 ^o 35' 38.0"N	07º 14' 44.3"E	659
24	18/07/2011	11 ^o 35' 36.6"N	07º 14' 46.3"E	664
25	18/07/2011	11 ^o 35' 35.2"N	07º 14' 45.0"E	669
26	18/07/2011	11 ^o 35' 34.0"N	07º 14' 44.0"E	668
27	18/07/2011	11 ^o 35' 32.2"N	07º 14' 43.6"E	664
28	18/07/2011	11 ^o 35' 30.6"N	07º 14' 43.7"E	667
29	18/07/2011	11 ^o 35' 27.2"N	07º 14' 44.5"E	664
30	18/07/2011	11 ^o 35' 23.7"N	07º 14' 43.1"E	666
31	18/07/2011	11 ⁰ 35' 24.4"N	07º 14' 44.3"E	655
32	18/07/2011	11 ⁰ 35' 22.1"N	07º 14' 22.1"E	658
33	18/07/2011	11 ^o 35' 22.9"N	07º 14' 40.9"E	659
34	18/07/2011	11 ^o 35' 20.7"N	07º 14' 41.1"E	666
35	18/07/2011	11 ^o 35' 21.4"N	07º 14' 41.9"E	668
36	18/07/2011	11 ^o 35' 22.0"N	07º 14' 43.7"E	669
37	18/07/2011	11º 35' 21.5"N	07º 14' 44.7"E	664
38	18/07/2011	11º 35' 20.3"N	07º 14' 43.7"E	663
39	18/07/2011	11º 35' 18.7"N	07º 14' 43.1"E	662
40	18/07/2011	11º 35' 17.0"N	07º 14' 44.3"E	667
41	18/07/2011	11º 35' 16.0"N	07º 14' 46.1"E	668
42	18/07/2011	11° 35′ 16.2″N	07° 14′ 49.0″E	665
43	18/07/2011	11° 35' 15.4"N	07° 14′ 53.0″E	666
44	18/07/2011	11 35 13.4 N 11 ⁰ 35' 14.9"N	07° 14′ 53.0 E	665
45	18/07/2011	11 35 14.5 N 11 ⁰ 35' 12.0"N	07° 14′ 57.8″E	669
46	18/07/2011	11° 35' 09.1"N	07° 14' 57.4"E	670
47	18/07/2011	11 03 05.1 N 11 0 35' 05.3"N	07° 14′ 57.4′ E	664
48	18/07/2011	11 03 03.5 N 11 0 35' 06.5"N	07° 14′ 33.2 E 07° 15′ 02.1″E	665
49	18/07/2011	11 03 00.3 N 11 0 35' 06.7"N	07° 15' 06.7"E	666
50	18/07/2011	11 ° 35 ° 00.7 N 11 ° 35 ° 03.9 N	07° 15' 00.7 E	667
	10/01/2011	11 00 00.0 1	07 10 00.0 L	001

			•	
				_
51	18/07/2011	11° 35' 02.9"N	07º 15' 14.0"E	661
52	18/07/2011	11º 35' 00.8"N	07º 15' 15.1"E	662
53	18/07/2011	11º 35' 00.0"N	07º 15' 19.1"E	664
54	18/07/2011	11º 34' 59.0"N	07º 15' 18.7"E	668
55	18/07/2011	11 ^o 34' 58.8"N	07º 15' 16.7"E	666
56	18/07/2011	11 ^o 34' 58.2"N	07º 15' 15.3"E	665
57	18/07/2011	11 ⁰ 34' 56.8"N	07º 15' 15.8"E	667
58	18/07/2011	11 ⁰ 34' 58.5"N	07º 15' 17.7"E	668
59	18/07/2011	11 ⁰ 34' 58.5"N	07 ⁰ 15' 20.0"E	669
60	18/07/2011	11 ⁰ 34' 59.9"N	07º 15' 20.0"E 07º 15' 23.0"E	665
61 62	18/07/2011	11º 35' 00.4"N 11º 34' 59.9"N	07° 15° 23.0 E 07° 15' 25.7"E	667 665
63	18/07/2011 18/07/2011	11° 34° 59.9 N 11° 34' 54.3"N	07° 15′ 25.7′ E 07° 15′ 30.4″E	666
64	18/07/2011	11° 34′ 54.3 N 11° 34′ 51.8″N	07° 15′ 30.4′ E 07° 15′ 37.1″E	669
65	18/07/2011	11° 34′ 51.8′ N 11° 34′ 50.7″N	07° 15' 37.1 E	665
66	18/07/2011	11 04 30.7 N 11 0 35' 10.5"N	07° 13° 33.3°E	668
67	18/07/2011	11° 35′ 10.3″N	07° 14' 14.0"E	667
68	19/07/2011	11° 35′ 10.3″N	07º 14' 15.9"E	664
69	19/07/2011	11 ^o 35' 10.5"N	07º 14' 16.5"E	665
70	19/07/2011	11º 35' 09.8"N	07º 14' 16.6"E	668
71	19/07/2011	11 ^o 35' 08.1"N	07º 14' 16.4"E	669
72	19/07/2011	11 ^o 35' 06.8"N	07º 14' 16.9"E	664
73	19/07/2011	11º 35' 05.8"N	07º 14' 17.5"E	665
74	19/07/2011	11º 35' 05.0"N	07º 14' 17.9"E	667
75	19/07/2011	11º 35' 00.6"N	07º 14' 25.7"E	664
76	19/07/2011	11º 35' 00.6"N	07º 14' 26.3"E	665
77	19/07/2011	11 ^o 35' 00.2"N	07º 14' 27.7"E	667
78	19/07/2011	11 ⁰ 35' 00.6"N	07º 14' 29.0"E	665
79	19/07/2011	11 ⁰ 35' 00.4"N	07º 14' 31.3"E	666
80	19/07/2011	11 ⁰ 35' 00.1"N	07 ⁰ 14' 31.4"E	668
81	19/07/2011	11 ⁰ 34' 59.4"N	07 ⁰ 14' 34.2"E	663
82	19/07/2011	11º 34' 59.2"N 11º 34' 58.2"N	07º 14' 34.4"E 07º 14' 34.9"E	662
83 84	19/07/2011 19/07/2011	11° 34° 56.2 N 11° 34' 57.5"N	07° 14′ 34.9 E 07° 14′ 35.8″E	665 663
85	19/07/2011	11° 34′ 57.5 N 11° 34′ 58.1″N	07° 14′ 35.6 E 07° 14′ 36.5″E	668
86	19/07/2011	11 °34' 58.2"N	07° 14′ 30.5′ E 07° 14′ 37.6″ E	664
87	19/07/2011	11°34 '57.7"N	07° 14′ 37.6°E	663
88	19/07/2011	11 ⁰ 34' 57.4"N	07° 14' 40.3"E	660
89	19/07/2011	11 ^o 34' 55.7"N	07º 14' 42.1"E	662
90	19/07/2011	11 ^o 34' 55.1"N	07º 34' 42.4"E	666
91	19/07/2011	11 ^o 34' 54.8"N	07º 34' 52.3"E	665
92	19/07/2011	11 ⁰ 34' 54.5"N	07º 34' 54.9"E	664
93	19/07/2011	11 ^o 34' 54.5"N	07º 14' 56.5"E	668
95	19/07/2011	11 ⁰ 34' 53.7"N	07º 14' 57.5"E	667
96	19/07/2011	11 ⁰ 34' 52.5"N	07º 14' 59.2"E	665
97	19/07/2011	11 ^o 34' 51.0"N	07º 15' 01.8"E	659
98	19/07/2011	11 ⁰ 34' 49.2"N	07º 15' 01.6"E	660
99	19/07/2011	11 ^p 34' 47.2"N	07º 15' 04.3"E	664
100	19/07/2011	11º 34' 46.7"N	07° 15' 04.5"E	668
101	19/07/2011	11 ° 34' 45.7"N	07° 15' 05.7"E	667
102	19/07/2011	11° 34′ 45.8″N	07° 15' 06.2"E	665
103	19/07/2011	11 04 45.6"N	07° 15' 08.0"E	667
104	19/07/2011	11 04 45.0 N	07° 15' 09.5"E	666
105	19/07/2011	11 0 34 45.0 N 11 0 34' 45.0"N	07° 15° 09.5° E	665
106	19/07/2011	11° 34′ 44.7″N	07° 15' 10.0°E	669
100	10/01/2011	11 01 17.7 1	07 10 10.7 L	000

92	law		4	al
Sa	ıaw	u e	et a	aı

Water Resources (2021) 31: 1 - 14

107	19/07/2011	11 ^o 34' 44.2"N	07º 15' 10.9"E	662	
108	19/07/2011	11º 34' 41.9"N	07º 15' 14.9"E	663	
109	19/07/2011	11 ^o 34' 43.2"N	07º 15' 17.6"E	665	
110	19/07/2011	11° 34' 44.1"N	07º 15' 21.7"E	668	
111	19/07/2011	11 ^o 34' 44.3"N	07º 15' 22.9"E	669	
112	19/07/2011	11 ^o 34' 44.3"N	07º 15' 23.7"E	670	
113	19/07/2011	11° 34' 04.7"N	07º 15' 26.0"E	665	
114	19/07/2011	11° 34' 45.9"N	07º 15' 27.1"E	660	
115	19/07/2011	11° 34' 45.9"N	07º 15' 28.1"E	667	
116	19/07/2011	11° 34′ 46.9″N	07º 15' 28.9"E	664	
117	19/07/2011	11º 34' 46.5"N	07º 15' 29.8"E	661	
118	19/07/2011	11 ⁰ 34' 45.2"N	07º 15' 30.3"E	667	

Table 3: Determination of Reservoir Area by Least Square Method Using Graph Paper.

Intervals(m)) No of small boxes Area		
	counted		
0 – 1	1,401	409,764	
1 – 2	847	247,731	
2 – 3	874	255,628	
3 – 4	710	207,661	
4 – 5	546	159,694	
5 – 6	708	207,076	
6 >	58	16,964	

Correction for expansion or contraction of graph paper

Horizontally:

81 small square boxes = 17 cm = 170 mm

One small square box = 170/81 = 2.0988 mm

Vertically:

78 small square boxes = 17 cm = 170 mm

For one small square box = 170/78 = 2.1795

Area of one small box = $2.0988 \times 2.1795 = 4.5743 \text{ mm}^2 = 4.57 \text{ mm}^2$

From the map of scale 1: 8,000

One millimeter on paper represents 8m on the ground

For $1 \text{mm}^2 = 64 \text{mm}^2$ on ground

Hence area of one small square box = 4.57 mm^2 on paper = $4.57 \text{ x } 64 \text{ m}^2 / 1 \text{m}^2$ on ground

One small square box = 292.48 m^2 on ground.

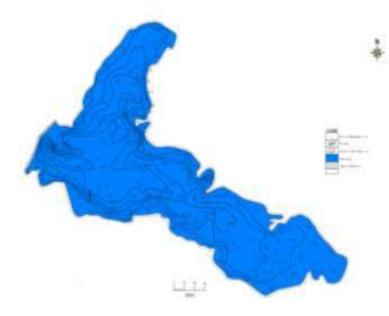


Figure 3: The Bathymetric Map of Mairuwa Dam Kastina State of Nigeria

INTERVAL (m)	AREA (m ²)	AVERAGE DEPTH (m)	VOLUME (m ³)
0-1	409,764	0.50	204,882
1-2	247,731	1.50	371,597
2-3	255,628	2.50	639,070
3-4	207,661	3.50	726,814
4-5	159,694	4.50	718,623
5-6	207,076	5.50	1,138,918
>6	16,964	6.25	106,025
TOTAL	1.504.518	2.60	3.905.929

Table 4: Calculation for the Remaining Storage of Mairuwa Impounding Reservoir

From Table 4, the calculated remaining storage of the Mairuwa Dam is **3,905,929m**³ as at 2011.

4.1 Calculating the Rate of Siltation of Mairuwa Dam

Loss in volume due to siltation from the date of construction of Mairuwa Dam results from the subtraction of the calculated remaining storage of 3,905,929m³ (Table 4) as at 2011 from the original installed capacity of the dam of 5.5 million cubic meters (5.5 x 106) is determined as. Loss in volume equals subtracting the calculated remaining storage from the original storage (5.5 x $10^6 - 3,905,929$) is determined as 1,594,071m³. The dam was constructed in 1970 and has a drainage basin area of 102km. Its area of open water table is calculated as 1,504,518m² (Table 4). The loss in volume by the number of years spent as at 2011 reveals the actual rate of $(1,594,071 \text{m}^3/41 \text{years})$ siltation 38,880m³/year. In comparison with the 100% installed capacity of the dam at the time of construction, the dam has lost 29% of its total storage, which translates to 0.71% loss in storage per annum. Loss in volume in 2020 (after 50 (38,880m³/year years) is Х 50years) 1,944,000m³/year subtract from installed capacity $(5.5 \times 10^6 - 1,944,000 \text{m}^3)$ is 3,556,000m³ (65%) which gives an increase in loss in volume from 2011 to 2020 as 1,961,929m³

(36%). The rate of siltation in 2020 (rate of siltation per annum x number of years) 38,880m³/year x 9years is 349,920m³/year. The loss in storage of 1,594,071m³ in the dam from 1970 to 2011 was 29% and the loss from 1970 to 2020 is 3,556,000m³ which is 65% of the installed capacity since the dam construction means increment of 1,961,929m³ in the loss of storage of 36% from 2011 to 2020. Therefore, the present loss in volume in 50 years is 3,556,000m³, remaining storage is 1,944,00m³ and the rate of siltation from 349,920m³/y.

4.2 Calculations for the Rate of Erosion in the Drainage Basin

4.2.1 Calculation of the Area of Drainage Basin:

Scale of the map on which calculation is done is 1:57,500.

 1mm^2 on scale 1: 57,500 is 57.5 m x 57.5 m = 3,306.25 m²

Graph paper was used, there are 9,546 small boxes covering the drainage basin.

Area of one small box = $1.8 \text{ mm x } 1.8 \text{ mm} = 3.24 \text{ mm}^2$

For the area of drainage basin on graph paper is $9,564 \times 3.24 \text{m}^2 = 30,929 \text{ mm}^2$.

The same area of the drainage basin expressed in square meter on the ground is $30,929 \text{ mm}^2 \text{ x}$ $3,306.25 \text{ m}^2/\text{mm}^2 = 102,259,006 \text{ m}^2$

Area of drainage basin = 102,259,006 m²

4.2.2 Volume of Rainfall in the Drainage Basin:

Given that the depth of rainfall for Funtua area is 1000mm/a (Figure 4)

1000 mm/a = 1.0 m/a

For the volume of rainfall in the drainage basin will be

Area of the drainage basin x depth of rainfall in the drainage basin

 $102,259,006 \text{ m}^2 \text{ x } 1.0 \text{ m} = 102,259,006 \text{ m}^3$

4.2.3 Volume of Total Runoff:

Given that the run-off coefficient for the area is equal to 0.23 (Schoeneich et al, 2001)

Therefore 1.0 m/a x 0.23 = 0.23 m/a = Depth of Total Runoff.

Volume of total run-off is Area of drainage basin x depth of total run-of is

 $102,259,006 \text{ m}^2 \times 0.23 \text{ m/a} = 23,519,571 \text{ m}^3$

23,519,571 m^3 = Volume of total runoff.

4.2.4 Volume of Suspended Solids Removed from the Drainage Basin:

Given that turbidity = 50 NTU = 0.5 g/l of suspended solid = $500 \text{ g/l} = 0.5 \text{ kg/m}^3$.

Assuming that the turbidity is formed by silty and clayey particles and its density after drying in 105 0 C temperature is 2.0 g/cm². For each gram is 0.5 cm³ of dry substance.

In every cubic meter, there is 500 g of suspended solids, after drying up, 250 cm³ of dry clayey and silty substance. 250 cm³ = 0.00025m³.

Since the total run-off from the drainage basin is $23,519,571 \text{m}^3/\text{a}$, and each cubic meter of water carries 250cm^3 of dried up suspended solids, therefore total volume of dried suspended solids received from the drainage basin is $23,519,571 \text{ m}^3/\text{a} \times 0.00025 \text{m}^3 = 5,880 \text{ m}^3/\text{a}$. of dry state suspended solids washed out from the drainage basin.

4.2.5 Volume of Dissolved Solid Removed from the Drainage Basin:

The average mineralization of water within the Crystalline Hydrological Province of Nigeria according to Schoeneich and Garba (2010) is 60 mg/I = 0.06 mg/cm³.

Therefore, the weight of dissolved substance in one cubic meter of water is 60 g.

Assuming that density of the dissolved solids in dry state is 1.5g/cm³.

Then 60 g/m 3 :1.5 g/cm 3 = 40 cm 3 /m 3 .

40 cm 3 /m 3 of dried dissolved solid = 0.00004 m 3 /m 3 .

Therefore, the total volume of the dissolved solid washed out from the drainage basin is

 $(23,579,571 \text{ m}^3 \times 0.00004) \text{ is } 943 \text{ m}^3/a.$

Table 5: Total Volume of Material Eroded from the drainage basin:

Material	Volume (m ³ /a)
Bottom load	38,880
Suspended load	5,880
Dissolved load	943
TOTAL	45,703

Total volume load eroded from the drainage basin is **45,703** m³/a.

Then rate of erosion in the drainage basin is $45,703 \text{ m}^3/\text{a}$: $102,259,006 \text{ m}^2$ =

 $0.00045 \text{ m}^3/\text{a} = 0.45 \text{ mm}^3 = \text{the rate of erosion in}$ the drainage basin is therefore, **0.45 mm/a**.

5.0 CONCLUSION

Area of Mairuwa Dam drainage basin is 102,259,006m². Volume of rainfall is 1.0m/a. The volume of rainfall in the drainage basin is 102,259,006m³. Runoff coefficient of the area is 0.23. Volume of total runoff is 23,519,571m³. Total volume of material eroded from the drainage basin is 4,703m³/a. The impounding reservoir was constructed in 1970, for the purpose of water supply and irrigation farming to the people of Funtua and its environs with an initial storage capacity of 5,500,000 m³ (5.5 x 10⁶). This study reveals that; in 2011, the remaining storage of the dam was 3,905,929 m³. the surface open water table was 1,504,518m³, loss in volume 1,594,071m3 (29%) which is 0.71% loss in storage per annum. In 2020 nine years later, the remaining storage is 1,944,000 m³(35%), loss in volume is 3,556,000m³ (65%). The dam has lost 65% of its total storage after 50 years of its construction. With this rate of siltation, the dam will be completely silted up totally in a few years if no action is taken to stop or reduce the rate of siltation of the dam. The rate of erosion in the Mairuwa drainage basin is 0.45mm/a, this is far more than the world average of 0.088mm/a. It is necessary to slow down the processes of erosion in the drainage basin and reduce drastically the rate of siltation. It is very important to employ sediment management strategy which is the construction of sediment traps upstream of the reservoir to prevent sediments from entering the reservoir, elevating crest of the dam,

dredging, hydraulic flushing, and afforestation of the drainage basin.

REFERNCES

ABU Committee on Protection of the Kubanni Dam Drainage Basin (2008): Report on Result of Measurement of the Remaining Storage in Kubanni Impounding Reservoir & Proposal for Upgrading the Environment in Kubanni Drainage Basin,

Presented to the Vice Chancellor, Ahmadu Bello University, Zaria. October 2008. *PP 28-29*

Althaus, J. J. and De Cesare, G (2006):
Sustainable sediment management of Alpine
Reservoirs considering ecological and
economical aspects-Reservoir
Sedimentation Vol 3, pp.1-3

Baba, A., Akaegbobi, M. and Schioeneich, K. (2009): Measurement of remaining storage and rate of siltation of the Ahmadu Bello University Farm Lake at Zaria. A paper presented at the 1st International Inaugural Workshop of West Africa Quaternary Research Scientists, City of Ibadan, Nigeria. pp.8.

Etiosa, U. (2006): Dams are unrenewable – A Discussion paper, Community Research and Development Centre (CREDC) Nigeria, Benin City Nigeria, pp.3-8

Fan, J and Morris, G.L., (1992) Reserviour Sedimentation. II: Reservoiur Desiltation and Long Time Storage Capacity, ASCE, Journal of Hydraulic Engineering, *Vol.118*, *No.3*.

Federal Survey of Nigeria (1986): Topographical maps, 1: 50,000, Sheet 78, Funtua N.W. Printed by Federal Surveys, Lagos, Nigeria.

- Graf, W. H. (1984). "Storage losses in reservoirs", International Water Power & Dam Construction, Vol. 36 No. 4.
- Iguisi, E.O. (1997): An Assessment of the Current Level of Sedimentation of the Kubani Dam, Savanna Vol. 18 No. 1.
- Kudamnya, E.A., Schoeneich, K. and Garba, M.L (2013): Remaining storage of the Zaria impounded reservoir and rate of erosion in its drainage basin; American International Journal of Contemporary Research. Vol 3, No.8. Pp 149 -160.
- Ofoezie I.E. (2002): Human Health and Sustainable Development in Nigeria: Schistosomiasis In Artificial Lakes. *Natural Resources Forum.* 26, pp 150- 160
- Oyegun R.O., (1980); The Effect of Tropical Rainfall on Sediment Yield from Different
- Land Use Surface in Suburban Ibadan. Ph.D Thesis Submitted to the Department of Geography, University of Ibadan, Nigeria. pp 21-25

- Schoeneich and Garba, (2010): Geol 405, Hydrogeology Lecture Notes. Department of Geology, Ahmadu Bello University, Zaria.
- Schoeneich, K. Garba, I; Danbatta, U.A; Najime, T; Hamza, H; and Garba, M.L: (2001): Environmental Resources of Zamfara State. Unpublished Report for Zamfara State Ministry of Solid Minerals
- UNEP (2001): Felling of Forests adding to World Water Shortages as Dams fill up with Silt United Nation Environmental Programme (UNEP) Press News Release 01/116. Online.
- Ritter, M.E. (2006): The Physical Environment: An Introduction to Physical Geography: The Geologic Work of Streams. John Wiley and Sons, Boston.
- White W.R., 2000. Contributing Paper: Flushing of Sediments from Reservoirs, Prepared for Thematic Review IV 5: Operation, Monitoring and Decommissioning of Dams. HR Wallinhford, U.K

Websites http://www.earth.googlr.com (accessed: 15th, November, 2012)