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Abstract 

Hydrochemical approach has been used to study and to appraise the features that control the 
groundwater characteristics and chemical attributes in the Enyigba mining district. Atomic 
Absorption Spectrophotometric method was used to analyse twenty groundwater samples 
collected from the area. Results were further subjected to geochemical parameters including Ion 
Exchange, Soltan’s, Diamond, Parson, Flickin, Gibbs, and Chadba’s plots. The result showed 
acidic to basic waters (pH ranges from 3.34 to 7.0). The concentration of heavy metals is Cd>Hg> 
Pb>Co>Mn. Soft to moderate water has been deduced with Ca+Mg and SO4+Cl, Ca-Mg-Cl, Na+ 

+ HCO3¯ water types in the area. Geochemical studies indicate rock-water interaction and ion 
exchange due to the dissolution of silicate sand carbonate weathering as the major factor that 
influences groundwater evolution in the area. Deduction from Soltan’s classification revealed a 
deep meteoric water type for the groundwater within the area. Potential health effects have been 
opined due to the carcinogenicity and toxicity of heavy metals. 

Keywords: Groundwater, Influence, Mine waste, Hydrochemistry, and Enyigba. 

 
INTRODUCTION 

Mining activities have been ongoing in the 
Enyigba area for over ninety years (Obiora et 
al., 2018). The area is renowned for its large 
deposit suites of galena and associated 
minerals (Nnabo et al., 2011; Obiora et al., 
2018; Obarezi and Nwosu, 2013; Obasi and 
Akudinobi, 2019a; Obasi et al., 2015; Obasi, 
2020; Ezeh et al., 2007). Many researchers 
have opined that the mining of these mineral 
deposits has aggravated population growth 
and economic activities basically around the 
mining communities (Obasi and Akudinobi, 

2019a). This has also facilitated the 
deterioration of the basic ecological value of 
soil and water quality in the area (Eyankware 
et al., 2016, 2021; Obasi and Akudinobi, 
2019a, 2020; Obiora et al., 2016). Further, 
the area has witnessed an increased 
population with a subsequent rise in the water 
need of the people (Eyankware et al., 2016, 
2021; Eyankware et al., 2016, 2021; Obasi, 
2020). This is mostly due to the open-cast 
method used in the mining process. 
Discharges and mine wastewater are usually 
discharged into arable farmlands and water 
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channels without recourse to environmental 
damages. The fouling of soil and water in the 
area through heavy metal discharge has been 
studied (Obasi et al., 2018; Obasi, 2020, 
Obasi and Akudinobi, 2019a; Obiora et al., 
2016). Effluents and mine wastes from over 
the world have been shown to contain 
Potentially Harmful Elements (PHEs) and 
Metallic Trace Elements (MTEs) that are 
harmful to humans and animals when they 
occur in excess above their thresholds (Owor 
et al., 2007; Hakkou et al., 2008a; Moreno-
Jimenez et al., 2009; Khan et al., 2008, 2010; 
Obasi and Akudinobi, 2019a,2019b, 
2020;Oti and Nwabue, 2013; El-Amari et al., 
2014; Obiora et al., 2016; Moye et al., 2017; 
Martinez-Martinez et al., 2013; Musah et al., 
2013). The use of groundwater for any 
purpose depends on the major ionic species 
and heavy metals concentration. Obasi and 
Akudinobi (2019a) have linked different 
kinds of health diseases and medical 
conditions to the consumption of water of 
poor quality. This is due to bioaccumulation 
in the food chain. The distribution and 
dispersion of ionic components of 
groundwater in the geochemical cycle of 
aquifers is due to rock weathering 
(Eyankware et al., 2018a). This has led to the 
interaction between pore-fluid content and 
the mineral composition of the rocks. This is 
certain as groundwater movement play an 
important role in the chemistry diversity and 
quality variation of groundwater. 
Anthropogenic activities also contribute to 
groundwater deterioration (Kelepertsis et al., 
2006; Skeppstrom and Olofsson, 2007; 
Arumugam and Elangovan, 2009; 
Eyankware et al., 2018b; Omo-Irubor et al., 
2018). Hence, there exists a need to appraise 

the factors that influence the processes of 
groundwater chemistry around the 
mineralized zones of Enyigba. Many authors 
have worked in the area, especially (Oti and 
Nwabue, 2013; Obiora et al.,2015, 
2016,2018; Obasi and Akudinobi, 2019a, 
2020; Obarezi and Nwosu, 2013). However, 
currently, no work has been done in the area 
on the assessment of factors that play major 
roles in groundwater quality around the 
mining area. The work, therefore, is aimed at 
applying hydrogeochemical approach to 
estimate the different processes that affect 
groundwater chemical qualities and 
evolution in the area. The potential sources 
for the heavy metals’ occurrence have been 
evaluated. Water types and hydrochemical 
attributes have been established. 
 
Geology, Climate, and Physiography 
Enyigba mining region is within Ebonyi 
State, Nigeria, and the region is located about 
14km away from the state capital 
(Abakaliki). It is bounded by longitudes 
6º03'E to 6º 21'E and latitudes 8º03'N to 
8º21'N. Regionally, Obiora et al (2015) have 
described the area as an integral part of the 
Lower Benue Trough.  Locally, the area is 
dominated by the Abakaliki shales which is a 
deposit of Albian transgression (Asu River 
Group). The transcurrent movement and 
several tectonic events resulted in the 
creation of structures and compressional 
folding which was also accompanied by 
hydrothermal activities that initiated sulphide 
ore mineralization, hence the shale serving as 
the host rock for the mineral deposits 
(Nwajide, 2013; Ogundipe, 2017; Obaje, 
2009; Ani et al., 2023). The Formation 
consists of majorly dark grey to black fissile, 
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laminated, and calcareous shales. They are 
hard, indurated, and fractured with interbeds 
of limestone, siltstone, and mudstones. The 
shale trend is dominantly in the NE-SW 
direction concordant with the regional 
architecture of the Benue Trough, and they 
have low dip direction (about 5°) and steep 
dips (about 42°) all in the NW-SE. 

The perennial Ebonyi River drains the entire 
area (Egbueri et al., 2022). It has a 
characteristic N-S flowing pattern. Major 
tributaries of the Ebonyi River in the area 
include Iyinu, Ikpete, AkparaIzzi, Nwoniyi 
Offia, and Akpara Ezza. They form the major 
sources of water for drinking, agriculture, 
and other purposes (Kawo and Karuppannan, 
2018). The rivers conform to a dendritic 
pattern, although there is a hint of the trellis 
pattern suggested by a tendency for the 
drainage lines to be approximately straight. 
The flow direction of the drainage systems is 
eastward where they join the Cross River. 
The climate of the study area is part of the 
South-East Nigeria tropical rainforest zone, 
with a characteristic rainfall range of 1750-
2000m/ annum (Obasi and Akudinobi, 2020). 
The bilateral season (Rainy and dry season) 
is prevalent in the area. The wet season 
usually lasted from March to October, being 
domineering during July through August and 
attenuating towards September (Edet and 
Okereke, 2022: Akpa et al., 2022). The wet 
season in the area results from the tropical 
maritime airmass (southeast trade wind), 
blowing across the Atlantic Ocean. The dry 
season is occasioned by the northeast trade 
wind from Sahara Dessert and the season 
usually spans from November to February. 
Temperatures range in the area is 160c to 280c 

and 200c to 380c, for rainy and dry seasons 
respectively (Iloeje, 1981). 

MATERIALS AND METHODS 

Twenty (20) samples of groundwater were 
collected from different locations across the 
area, using plastic bottles. Prior to the 
sampling, sample bottles and beakers were 
thoroughly washed and drenched for three 
days in acidified distilled water (1.0mL of 
HNO3). Thereafter they were cleaned using 
dilute HNO3 followed by carefully washing 
with the sampled water (at least three times) 
at the point of sample collection. Before 
sampling, the boreholes (Hand pump wells) 
were pumped for 5 to 10 minutes whereas, in 
the case of hand-dug wells, any visible 
debris/waste was cleared before collecting 
samples. The resulting sample was filtered 
using disposable filters of 0.45µm diameter 
to enable the removal of any impending 
particles prior to storage in already-prepared 
bottles. Freshly prepared HNO3 

(concentration of 1.0 mL) was used for 
sample acidification with new syringes. This 
was done to avoid sorption. Ice-packed 
containers were used for sample storage to 
ensure a relatively stable transportation 
temperature. 
The Cation concentrations were determined 
through laboratory analysis using Fast 
Sequential (FS) (Varian 240 AA) Atomic 
Absorption Spectrophotometer, while 
titrimetric methods were used for anions.  
Physical parameters including electrical 
conductivity pH were measured at points of 
sample collection (in-situ) using a pH meter 
(Hanna model H1991300) and electrical 
conductivity meter (DDS 307 model) 
respectively. Generally, sampling steps and 
data analysis was done relative to Standard 
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methods for water and wastewater of APHA 
(1999). 
Soltan Classification 
Constructed on meteoric genesis (r2) and 
base-exchange (r1) indices, Solten (1999) 
has classified groundwater into two sources 
(equations 1a and 1b).  
 

𝑟1 = (𝑁𝑎ା − 𝐶𝑙ି)/𝑆𝑂ସ
ଶ_   

  (1a) 
 

   𝑟2 = [(𝑁𝑎ା + 𝐾ା   ) − 𝐶𝑙ି 𝑆𝑂ସ
ଶ_]⁄                                              

(1b) 
 
Chadha Classification 

𝐻𝐶𝑂ଷ
ି − (𝐶𝑙ି + 𝑆𝑂4ଶା +  𝑁𝑂3 −)𝑚𝑒𝑞

/𝐿                                 (2𝑎) 

𝐶𝑎ଶା + 𝑀𝑔ଶା/(𝑁𝑎ା

+ 𝐾ା)  𝑚𝑒𝑞

/𝐿                                                 (2𝑏)   

Gibbs Plots 
A schematic approach to understanding and 
interpreting chemical constituents of water 
relative to aquifer lithologies was proposed 
by Gibbs (1970). 
          For Cations: 

   𝑁𝑎ା/(𝑁𝑎ା + 𝐶𝑎ଶା)  𝑚𝑒𝑞/𝐿 
  (3a) 
      
   For Anions: 

𝐶𝑙ି/(𝐶𝑙ି + 𝐻𝐶𝑂ଷ
ି) meq/L    (3b)

 

 
Figure 1: Geological Map and sample location. 
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RESULTS AND DISCUSSION 

Table 1 is the results of analysis conducted on the samples against the sample locations. 
minimum, maximum, and average values were also calculated and presented.  

Table 1: Results of analysis 

 
 
DISCUSSION 

Hydrochemical Evaluation. 
According to Solten (1999), the 
hydrogeochemical evolution of groundwater 
is controlled by physiochemical processes 
such as evaporation, ion exchange, 
weathering, oxidation–reduction, 
precipitation, and dissolution. 

 

 

Physical parameter 

pH: pH indicates the intensity of the acidity 
or alkalinity of a solution. This is very 
important as it strongly determines the 
chemical activity that goes on in any physio-
chemical environment (Obasi and 
Akudinobi, 2019a). Several factors control 
the pH of water, this includes soil 
composition and bedrock geology, and 
inorganic constituents in the water bodies. 
Heavy metals' bioavailability is usually 

Ec TDS Na+ Cl- Mg2+ K+ HCO3
- SO4

2- NO3
- CO3

-
Ca2+ Cd Fe Ag Mn Co Hg Pb Zn

(µS/cm)

OP/01 152.0 5.8 71.6 4.0 2250.0 0.0 4.3 117.2 6.6 64.0 126.0 12.8 0.0 0.0 0.3 2.9 0.0 2.3 0.0 1.4

OP/02 327.0 4.0 53.0 4.4 37.0 1.0 5.9 113.5 18.9 81.0 172.0 33.0 0.6 0.1 0.2 9.1 0.0 1.9 0.0 0.1

OP/03 345.0 6.3 43.0 8.0 36.0 10.6 1.1 9.8 35.4 4.3 5.0 45.0 0.0 0.0 0.5 4.8 0.0 0.7 0.0 0.0

OP/04 79.0 6.1 67.2 8.8 55.0 0.0 1.3 11.7 13.6 6.1 134.0 37.2 0.0 0.0 0.9 12.1 0.0 0.0 0.0 2.1

OP/05 376.0 4.9 1.3 9.1 53.0 0.0 1.8 180.6 16.5 5.9 70.0 24.4 0.3 0.0 0.0 1.3 0.0 0.2 0.0 0.0

OP/06 257.0 3.3 0.8 5.5 52.0 10.4 2.4 72.0 19.3 5.5 62.0 8.6 0.4 0.0 0.0 0.0 0.0 0.1 0.2 0.0

OP/07 103.0 5.3 4.0 6.1 37.0 8.3 8.4 8.4 4.5 5.1 114.0 9.8 0.2 0.0 0.0 2.5 0.2 0.2 0.0 0.0

OP/08 98.5 6.4 28.4 11.1 39.0 5.1 13.3 10.5 6.1 5.6 72.0 19.6 0.7 0.0 0.0 0.0 0.0 0.4 0.0 0.0

OP/09 88.3 6.0 34.2 6.1 2360.0 4.0 12.4 231.3 4.6 5.0 168.0 26.8 0.6 0.0 0.0 0.0 0.0 0.2 0.0 0.0

OP/10 79.8 5.8 21.6 9.2 47.0 9.2 3.3 156.2 5.5 6.2 241.0 26.3 0.8 0.0 0.0 0.0 0.0 0.4 0.0 0.1

OP/11 850.0 4.9 50.0 4.3 55.0 3.6 6.7 69.6 10.1 70.0 301.0 20.6 0.3 0.0 0.0 0.0 0.1 0.4 0.8 0.1

OP/12 78.2 7.1 17.4 6.9 54.0 1.0 9.8 155.6 2.1 62.0 292.0 32.7 0.5 0.0 0.0 0.0 0.0 0.2 0.4 0.1

OP/13 648.0 7.1 4.2 5.0 92.0 0.1 9.2 150.7 4.3 11.4 210.0 26.6 0.8 0.0 0.0 0.0 0.1 0.4 0.3 0.2

OP/14 543.0 7.0 4.0 7.7 97.0 0.7 73.9 147.1 9.3 72.0 248.0 191.0 0.1 0.0 0.0 0.0 0.0 0.4 0.7 0.0

OP/15 418.0 7.0 3.8 4.6 40.0 0.6 4.4 61.6 30.1 4.2 141.0 43.9 0.1 0.0 0.0 0.0 0.0 0.4 0.7 0.0

OP/16 420.0 7.1 3.0 7.9 4.5 0.0 12.2 141.0 5.3 5.6 121.0 15.6 0.2 0.0 0.0 0.0 0.1 0.3 0.0 0.0

OP/17 521.0 7.0 3.4 11.9 4.7 0.0 3.3 89.1 8.1 4.3 276.0 9.0 0.4 0.0 0.0 0.0 0.1 0.4 0.0 0.0

OP/18 587.0 6.7 16.0 8.7 3.7 10.9 6.7 67.1 10.3 5.9 142.0 191.0 0.5 0.0 0.0 0.9 0.0 0.3 0.0 0.1

OP/19 357.0 7.0 4.0 8.6 32.0 0.0 9.8 93.4 13.6 5.4 82.0 52.0 0.4 0.0 0.0 0.7 0.0 0.5 0.0 0.0

Min 78.2 3.3 0.8 4.0 3.7 0.0 1.1 8.4 2.1 3.8 5.0 8.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Max 850.0 7.1 71.6 11.9 2360.0 10.9 73.9 231.3 35.4 81.0 301.0 191.0 0.9 0.1 0.9 12.1 0.2 2.3 0.8 2.1

Average 344.6 6.0 6.0 7.4 352.3 3.7 12.5 99.6 12.2 23.6 152.6 48.7 0.4 0.0 0.1 1.8 0.0 0.5 0.1 0.2

1.2 0.0 0.4 0.2 0.2

(mg/L)

3.8 74.0 45.2 0.9 0.0 0.09.4 38.0 4.8 9.2 64.7 6.2

Sample 
code

pH

OP/20 325.0 7.0 12.4
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influenced by pH mostly in soil though this 
variability is affected by the precipitation of 
insoluble organic complexes, hydroxides, 
and carbonates (Roy et al., 2015; Khaled and 
Muhammad, 2016; Akpa et al., 
2023a).Values of pH in the area range from 
3.34 to 7.09 (Table 2). This indicates acidic 
to basic waters for the area.According to Jong 
et al (2017), low pH is attributed to rainwater. 
This is due to the percolation of rainwater 
through the soil. This process results in a 
buildup of CO2accentuated during microbial 
oxidation in the unsaturated zone with rich 
organic matter content forming carbonic acid 
(Akpa et al., 2023a). Dissolution of CO2 

enhances the integral concentrations of 
inorganic carbon in the aquifer and attenuates 
pH in line with the carbonic acid dissociation 
formed in the process (Henderson, 1995). 

Electrical Conductivity: The Ec of water 

samples ranges from 78.2 - 850Scm-1. The 
groundwater shows very high conductivity 
values. This can be linked to the relatively 
high content of charged ions resulting from 
the oxidational progressions occurring in the 
mix (Obasi, 2017). Generally, the 
conductivity values of the samples were 
below WHO's (2011) permissible limit 

(1000S cm 1). 

TDS: The TDS of the samples analysed 
ranges from 0.80 – 71.58 mg/L. The foremost 
version of the WHO stipulation on drinking 
water quality (WHO, 1984) has a permissible 
value of1000mg/L for TDS relative to 
consideration of taste. Objectionable taste is 
likely to be detected when the TDS > 
1200mgL by the consumers (WHO, 2011). 
High dissolved metallic content could 
influence the TDS quotient and induce taste 

and odour, this usually aggravates water 
quality degradation especially when stored 
(Egbueri and Mgbenu, 2020; Akpa et al., 
2023b). Groundwater TDS and pH variations 
are usually a result of geogenic processes 
than anthropogenic factors (Ukah et al., 
2019; Akpa et al., 2023b), however, metallic 
content diversity is more of anthropogenic 
influences (Obasi et al., 2023; Egbueri, 
2019). Water that has an extremely low TDS 
value could also be intolerable for 
consumption following its flat, insipid taste 
(Obasi, 2017). 
 
Hydrochemical Parameters 
Figures 2 to 7 have been used to show the 
hydrochemical process that affects 
groundwater geochemistry. The plot of Ca2+/ 
(HCO3¯ + SO4

2¯) versus Na+/Cl¯ indicates 
that samples OP/01, 02, 03, 05, 06, 08, 09, 11, 
12, 13, 15 and 20 fall under the natural state. 
This result shows that the dissolution of 
carbonate and silicate rock is the key factor 
that affects the composition of groundwater 
in the area. Samples OP/04, 10, and 19 
coincide with the reverse cation exchange 
envelope whereas OP/07, 14, 16, 17, and 18 
are outside the various categories of factors 
that affect groundwater in the mining district. 
The hydrochemical characteristics of 
groundwater can be studied using an End-
member diagram (Table 2). 

Gaillardet et al. (1999) stated that end-point 
indices could be applied to groundwater 
studies to analyse the sources of rock-
weathering components in the water. This 
analysis indicates that the source 99.9% of 
groundwater chemistry within the study area 
is from the dissolution of carbonate and 
silicate minerals (Fig. 3). Silicate weathering 
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has affects other processes, especially the 
dissolution of carbonate rocks (Raju et al., 
2010).

Table 3: Chemical compositions of the silicate and carbonate end members (Gaillardet et al 1999) 

Chemical Composition Silicate End Members Carbonate End Members 
Ca2+/Na+ 0.35 ± 0.15 50 
Mg2+/Na+ 0.24 ± 0.12 10 
HCO3¯/Na+ 2 ± 1 120 

 

 

Figure 2: The plot of Ca2+/ (HCO3¯ + SO4
2¯) versus Na+/Cl¯ 

 
Analysis of Mg2+ / Na+ against Mg2+ /Ca2+ on 
the end diagram (Fig 4) portrays that 
evaporation effects, weathering of rocks, and 
chemical leaching constitute the major 
factors that control the chemical evolution of 
groundwater sources across the area. Li 
(2018) noted that rock–water interaction is an 
acute phase of mineral dissolution.  

A diamond field diagram was applied to 
classify the groundwater based on major 
chemical processes prevalent in the 
groundwater aquifers. The result indicates 
that the groundwater lies within the 
hydrogeochemical facies of high Ca + Mg 
and SO4 + Cl (Fig. 5).  The primary sources 
of hardness have been indicated as Ca and 
Mg. A Ca –Mg – Cl water type was also 
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indicated in the area using Parson’s plot (Fig 
6). A variation from soft, fresh, and 
moderately hard groundwater types has been 

indicated using TDS and total hardness (TH) 
hydrochemical classification (Fig. 7). 
Increase in TDS could lead to increased Ec.

 

 
Figure 3: End-member plot for groundwater samples of the study area 

 
Figure 4: Plot of Mg/Ca versus Mg/Na of the study area. 
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Figure 5: Diamond field Plot (of Piper by Lawrence and Bal-Subramanian, 1994). 

 

 
Figure 6: Parson’s Plot of the study area. 
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Figure 7: Classification of Groundwater based on TH and TDS 

Geochemical classification of 
groundwater 

Chadha Plot: The groundwater of the study 
area on Chadha plots (Fig 8) shows that they 
fall within group 8 (Na+ + HCO3). This group 
indicates the excessiveness of Alkali metals 
beyond the counterpart alkaline earth metals, 
this also corresponds with the dominance of 
weak acidic anions surpassing strong acidic 
anions. 

Gibbs Plot: Gibbs Plot uses the distribution 
of TDS, cations (Na+, Ca2+), and anions (Cl¯, 
HCO3¯) to designate groundwater types 
(Equation 3a and 3b; Fig. 9).  This is a very 
important tool, and it underscores the role of 

rock-water interaction, precipitation, and 
evaporation on groundwater geochemistry 
characterization (Kawo and Karuppannan, 
2018). According to Gibbs (1970), the 
variation in the ratio of Na+/ (Na+ + Ca2+) and 
Cl¯/(Cl¯+HCO3¯) results from TDS which is 
also significant in assessing the sources of 
dissolved ions.  This is possible following the 
research of Eyankware et al. (2018a) and 
Jong et al. (2017), suggesting that the 
physical and chemical attributes of 
groundwater can be deduced from the 
characteristics of cations and anions, which is 
influenced by the soil–water interaction as 
groundwater evolves in the aquifer system. 
No dominance was indicated in the area.
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Soltan classification 
The Soltan (1999) groundwater 
characterization indices anchors on base-
exchange indices (r1) and meteoric genesis 
indices (r2) computed using equations 1a and 
1b. When r1<1 and r2<1, the groundwater 
sources designate Na+ – SO4

2¯ and deep 
meteoric type, respectively, whereas when 
r1>1 and r2>1 it suggests groundwater 
sources from Na+ – HCO3¯ and shallow 
meteoric type. Following the above 
characterizations, the groundwater sources in 
the area are basically Na+ – SO4

2¯ type (Table 
4), this might have resulted from the 
geogenic events (marine deposits, saline 
water intrusion, and hydrothermal activities) 
that occurred in the area. 

Ion Exchange 
Bivariate plots of Na/Cl ratio against EC, Mg 
against Ca +Mg, Na against Ca, Cl against 
Na, and Ca + Mg against HCO3 + SO4 (Fig. 
10 a- e) were also applied to determine the 
main factor that controls the chemical 
characteristics of groundwater in the area. 
The analysis indicates the weathering of Na-
feldspar and/or other Na-silicate minerals and 
Ca-carbonate or Ca-silicate dissolution as a 
major component of the groundwater 
evolution of the area. This is because of 
significant cation exchange instigated by rich 
silicate rocks within the groundwater-bearing 
zones, solutes from weathering processes, 
and precipitation of dissolved species into the 
aquifer through infiltration. This also implies 
a recharge zone for the area.

 

Fig. 8. Chadha’s Diagram modified after Piper for groundwater sample of the study area. 
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Fig. 9: Gibb’s Plot of Groundwater Samples in the Area 

Table 3: Results of Soltan’s classification of groundwater in the Enyigba mining district 

Sample 
Code 

r1 Water Type r2 Water Type 

OP/01 -9.61 Na+ – SO4
2-(DM) -964.3 Na+ – SO4

2-(DM) 
OP/02 -0.04 Na+ – SO4

2-(DM) -0.03 Na+ – SO4
2-(DM) 

OP/03 -0.01 Na+ – SO4
2-(DM) -0.01 Na+ – SO4

2-(DM) 
OP/04 -0.08 Na+ – SO4

2-(DM) -0.08 Na+ – SO4
2-(DM) 

OP/05 -0.06 Na+ – SO4
2-(DM) -0.06 Na+ – SO4

2-(DM) 
OP/06 -0.05 Na+ – SO4

2-(DM) -0.05 Na+ – SO4
2-(DM) 

OP/07 -0.16 Na+ – SO4
2-(DM) 0 Na+ – SO4

2-(DM) 
OP/08 -0.09 Na+ – SO4

2-(DM) 0.01 Na+ – SO4
2-(DM) 

OP/09 -14.29 Na+ – SO4
2-(DM) -14.11 Na+ – SO4

2-(DM) 
OP/10 -0.16 Na+ – SO4

2-(DM) -0.15 Na+ – SO4
2-(DM) 

OP/11 -0.13 Na+ – SO4
2-(DM) -0.11 Na+ – SO4

2-(DM) 
OP/12 -0.59 Na+ – SO4

2-(DM) -0.46 Na+ – SO4
2-(DM) 

OP/13 0.55 Na+ – SO4
2-(DM) -0.5 Na+ – SO4

2-(DM) 
OP/14 -0.2 Na+ – SO4

2-(DM) -0.05 Na+ – SO4
2-(DM) 

OP/15 -0.03 Na+ – SO4
2-(DM) -0.02 Na+ – SO4

2-(DM) 
OP/16 0.04 Na+ – SO4

2-(DM) 0.05 Na+ – SO4
2-(DM) 

OP/17 0.04 Na+ – SO4
2-(DM) 0.05 Na+ – SO4

2-(DM) 
OP/18 0.02 Na+ – SO4

2-(DM) 0.04 Na+ – SO4
2-(DM) 

OP/19 -0.04 Na+ – SO4
2-(DM) -0.02 Na+ – SO4

2-(DM) 
OP/20 -0.18 Na+ – SO4

2-(DM) -0.15 Na+ – SO4
2-(DM) 
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Figure 10a: Plot Na/Cl ratio versus EC. 

 

Figure 10b: Plot of Mg versus Ca +Mg 

 

Figure 10c: Plot of Na versus Ca (meq/L). 
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Figure 10d: Plot of Cl versus Na (meq/L). 

 

Figure 10e: Plot of Ca + Mg versus HCO3 + SO4 (meq/L) 

 
Evaluation of Levels of Heavy Metals 
Levels of Potentially Harmful Elements 
(PHEs) including cobalt (Co), cadmium (Cd), 
iron (Fe), lead (Pb), silver (Ag), zinc (Zn), 
manganese (Mn), and mercury (Hg) were 
evaluated in the area. This is necessary as 
some PHEs are toxic and carcinogenic. Some 
are more persistent in the environment and 
possess serious health risks (Obasi and 
Akudinobi, 2020; Igwe and Ukaogo, 2015). 
They can leach into the soil horizon and 
migrate into groundwater aquifers and cause 

severe health issues (Obasi and Akudinobi, 
2019a; Sha et al., 2017). 
 
Cadmium: High values of cadmium were 
observed in the analysed water samples 
(varying from 0.00 to 0.88mg/L). About 85% 
of samples indicated Cd content greater than 
the WHO (2011) permissible limits. This can 
lead to serious health problems as cadmium 
is among the most carcinogenic and toxic 
metals (Friberg et al., 1986).  
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Iron: Iron is highly abundant in the earth's 
crust (Obasi and Akudinobi, 2020). The Fe 
concentration ranges from 0 to 0.08mg/L. 
The result indicated Fe concentration below 

the WHO (2011) drinking water standard for 
all water analysed samples. This can be due 
to lower exposure of groundwater to 
oxidation processes.

 
Table 5a:  Result of PHEs in the area. 

 
 
Table 5b:  Result of PHEs in the area. 
PHEs OP/12 OP/13 OP/14 OP/15 OP/16 OP/17 OP/18 OP/19 OP/20 WHO, 

2011 
Pb 0.38 0.68 0.65 0.65 0 0 0 0.01 0.20 0.01 
Cd 0.47 0.82 0.09 0.14 0.18 0.43 0.53 0.44 0.88 0.003 
Hg 0.24 0.44 0.38 0.39 0.33 0.38 0.29 0.48 0.39 0.06 
Zn 0.11 0.21 0 0 0 0.02 0.05 0.01 0.21 0.01 
Ag 0 0 0 0 0 0 0 0 0 0.1 
Co 0 0.10 0.02 0.02 0.11 0.06 0.04 0 0.001 Nil 
Fe 0.02 0 0 0 0 0 0 0 0 0.3 
Mn 0 0 0 0 0 0.02 0.93 0.66 1.22 0.4 

 
Silver: The weathering of silver-bearing 
rocks is the main source of silver in the 
environment. A large amount of silver is also 
released by processes of precipitation. The 
result (ranges from 0.00 to 0.91 mg/L) 
indicates that only 20% of the water samples 
analysed were beyond the WHO (2011) 
guideline limit for drinking water. Obasi et al 
(2015) noted that lead, copper, and zinc occur 
in association with their ores.  

Mercury:  Mercury occurs as a native 
element found in rock deposits. Their 
occurrence in water is due to the breakdown 
of minerals in the rock deposits. The result 
(ranges from 0.00 - 2.3 mg/L) shows that 
about 95% of samples exceeded the WHO 
(2011) permissible limit for drinking water. 
Only sample OP/04 was below the WHO 
(2011) risk benchmark for drinking water. 
Mercury is highly toxic. Many studies have 
noted impairment to the kidneys, the nervous 

PHEs OP/01 OP/02 OP/03 OP/04 OP/05 OP/06 OP/07 OP/08 OP/09 OP/10 OP/11
WHO, 
2011

Cd 0 0.61 0 0 0.28 0.35 0.15 0.74 0.64 0.78 0.33 0.003
Fe 0 0.08 0 0 0 0 0 0 0 0 0 0.3
Ag 0.34 0.23 0.53 0.91 0.04 0 0 0 0 0 0 0.1
Mn 2.91 9.14 4.76 12.1 1.34 0 2.49 0 0 0 0 0.4
Hg 2.3 1.9 0.7 0 0.15 0.07 0.17 0.37 0.22 0.37 0.36 0.06
Co 0.001 0.027 0 0 0.04 0.04 0.15 0.02 0.02 0 0.11 Nil
Pb 0 0 0 0 0 0.21 0 0 0 0 0.08 0.01
Zn 1.35 0.07 0 2.09 0 0 0 0 0 0.06 0.06 0.01
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system, and the gastrointestinal tract as 
dangers of high mercury ingestion (Obasi and 
Akudinobi, 2020; Engwa et al., 2018). 

Manganese: Manganese occurs in 
association with other PHEs in sulphide-rich 
rock deposits, its concentration in the study 
area ranged from 0.00 -12.1 mg/l. Not fewer 
than 55% of the samples indicated Mn2+ 

above WHO (2011) safe limit for drinking 
water, whereas 45%were below the set limit 
(Table 5a and 5b). Obasi (2020) suggested 
that manganese often occurs in the 
environment naturally through the 
breakdown of rocks and minerals (Obasi, 
2017). 

Cobalt: Its concentration ranges from 0 – 
0.15 mg/l. Cobalt is mostly present in nickel-
bearing deposits. Obasi (2020) also stated 
that Ni-Cu sulphide deposits abundant in 
mafic and ultramafic rocks and sedimentary 
rocks characterized by copper deposits are 
good sources of cobalt in the environment. 
Abakaliki tectonic framework emplaced 
several mafics to ultramafic intrusive rocks 
(Chukwu and Obiora, 2021; Ani et al., 2023), 
which their weathering and quarrying could 
have accentuated cobalt mobility in the area. 

Lead: The concentration of lead ranges from 
0.00 – 0.80 mg/L and indicated that 45% of 
samples analysed were above the WHO 
(2011) safe limit for drinking water. Lead is 
very carcinogenic and immobile; its 
introduction into the environment has been 
associated with lead ores and industrial 
pollution sources (Obasi and Akudinobi, 
2020). 

Zinc: Zinc introduction into groundwater can 
be aggravated through the dissolution of 

lead-zinc minerals, other rocks, and soil with 
high zinc content. The concentration of zinc 
ranges from 0.00 – 2.09 mg/L. 50% of 
samples are above the WHO (2011) 
permissible limit for drinking water. Though 
zinc is a vital nutrient for plant and animal 
development and growth, however, high 
concentrations have been associated with 
stomach cramps, nausea, and vomiting 
(Obasi and Akudinobi, 2020; Ullah et al., 
2017). 
 
CONCLUSION 

The occurrence of lead-zinc and associated 
minerals in the Enyigba Mining district has 
posed a lot of geogenic and anthropogenic 
factors in the hydrogeochemistry of the area. 
Twenty groundwater samples were analysed 
using Atomic Absorption 
Spectrophotometric methods. Results were 
subjected to various hydrochemical plots 
(including Diamond field plots, Parson plots, 
Chadha’s plots, and Gibb’s plots) to 
determine the characterization of the 
groundwater and to establish the factors that 
control the chemical attributes of 
groundwater in the area. Soltan’s 
Classification and Ficklin Diagram were 
applied to this study. The result indicates that 
silicate and carbonate weathering is the major 
process that affects groundwater in the area. 
Hydrochemical End-members study reveals 
that 92 % of groundwater analysed occurs in 
the natural state. And the plot of Mg/Ca 
against Mg/Na reveals that 73% of 
groundwater is controlled by rock-water 
interaction. A Ca + Mg, SO4 + Cl, Na+ + 
HCO3¯, and Ca-Mg- Cl water type has been 
described in the area.  Classification of TDS 
against TH reveals a soft-fresh and moderate-
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hard category of groundwater. Ion exchange 
of the mineral components and rock-water 

interaction plays important roles in the 
silicate weathering process in the area. 
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