Prevalence of Microbial Contaminants in Shallow Aquifers of Abakaliki Semi -Urban Areas, South-eastern Nigeria.

Obasi, P.N.¹; Obasi-Philip, A.U.²; Okolo, C.M.³; and Edene, E.N.¹

¹Department of Geology, Ebonyi State University Abakaliki

²Medical Laboratory Science Unit, Alex- Ekwueme Federal Teaching Hospital, Abakaliki.

³ Department of Geological Sciences, Nnamdi Azikiwe University, Awka

[©]Correspondence Author: obasiphilip26@gmail.com. philip.njoku@ebsu.edu.ng

+2348060636246

Abstract

Over 80% of the semi- urban population of Abakaliki depends on shallow wells as their main source of water supply (Obasi et al, 2022). These wells are recharged by shallow aguifers of the fractured shales because of the Santonian epeirogeny which characterizes the area. The population is composed of middle-class low-income earners and students who cannot afford the luxury of potable water supply. Due to increasing complaints from students on the condition of their well water sources, this study was carried out to examine the prevalence of microbial contaminants of wells in the areas of Kpirikpiri, Presco and Nkaliki all in Abakaliki, Ebonyi State. This is a way of safeguarding public health against water borne diseases. Eighty (80) water samples were collected from eighty hand dug wells and were assessed for bacteriological quality using the coliform count most probable number and filter membrane methods. The result of the study revealed that most of the wells (over 92%) were grossly contaminated with bacteria coliforms. Comparatively, wells in Kpirikpiri were more contaminated. Only seven water samples are within the standard limit of 10cfu per 100 ml set by the World Health Organization. This result highlights the fact that most well water sources in the areas are not safe microbiologically for drinking and could lead to outbreak of water borne diseases. Proper well construction practice, good environmental and personal hygiene must be advocated, especially by the users of these wells to prevent their contamination with bacterial coliforms.

Keywords: Shallow aquifers; Hand dug wells; Microbial; Contaminants

INTRODUCTION

Shallow wells are wells that are less than 15 m in depth (Mahajan, 2011, Olivia, 2022). They are being recharged by shallow aquifers. Such wells are very important in areas where water shortage is experienced, especially in the tropical countries where they serve as alternatives to surface water (Stevens, et al, 2003). Mirza et al, (2017) noted that the domestic, agricultural, and industrial use of water, which has been on the increase, has led to the deterioration and

exhaustion of surface water in many parts of Consequently, world. groundwater sources (boreholes and hand dug wells) are being harnessed for agroeconomic sustainability. Nevertheless, potable water is not commonly found, and its provision limits the setting up of villages and towns to places where supply exists (Todd, 1980). All over the world, villages and cities have the history of emanating from points of water supplies. Hence, the quality of drinking water in developing countries is of great concern, especially where there are rapid urban

expansions and growth in the country's population. Geology and anthropogenic activities have strong control on the quality of groundwater (Ekanem et al, 2011). Industrial, mining, and municipal wastes can result to contamination and deterioration of shallow aguifers. Such contamination can be physical, chemical, or biological which includes microbiological (Obasi, 2017; Obasi and Akudinobi, 2019b). Microbial contamination of water sources used for drinking, recreation, and fish farming remains a serious health risk to humans (Ekanem et al, 2011). The occurrence of microorganisms as the largest population on earth and with the ability to live in different associations makes them significant in the ecological system (Stevens et al; 2003). Yusuf (2007) noted that one of the microbial bacteria are contaminants that are frequently found in groundwater. Bacterial contaminated in drinking water and poor sanitation has been enumerated among factors responsible for over a million deaths per year (Akpor and 2011; Kabir *et* al., Muchie. Bacterial quality is probably the most important consideration in assessing drinking water (Leclerc et al, 2001, 2002; Craun, 2010: Maluski et al. 1995), but this is most times neglected by both the pathologists and the water sanitation agencies. According to Okafor, (1985); Okpokwasili and Akujobi, (1996), the presence of faecal coliform in water is an indicator of the presence of faecal contamination of the water body. Faecal coliform is a group of bacteria found in the faeces of warm-blooded animals such as humans, livestock, pets, and wildlife (Olajubu, et al., 2014, Okafor, 1985). Poor management of on-site septic systems, livestock waste and pet waste are sources of microbial contaminants in wells. These pathogens can be accidentally swallowed with water or eaten in contaminated aquatic foods. Though coliform bacteria do not generally cause disease, its presence in the well water means that contamination has

occurred in the well (Althus, 1983). Coliform bacteria can originate in the intestines of animals and humans.

Microbial examination of water is used routinely to confirm that water is safe for human consumption such as bathing and recreational activities (Moore et al., 2014). This is necessary as groundwater quality can be influenced directly or indirectly by microbiological processes, which transform both inorganic and organic constituents of groundwater. Microbial decomposition has been demonstrated for a whole range or organic compounds, including hydrocarbons, chlorinated solvents, and pesticides (Moore et al, 2014). Abdelmonem et al., (2012) assessed the microbial load of water in Al-Butana, drinking Chidavaenzi (1997) also used this method to study the lateral travel time of coliforms from pit latrines in Zimbabwe. Ibe and Okpelenye assessed (2005)also the microbial contamination of drinking water in Uli, Nigeria while Ingrid et al (2004) assessed the contamination of drinking water from septic wastes in Eastern Nebraku. Gleeson and Gray (1997) emphasized that of the four types of pathogens (viruses, bacteria, protozoa, and parasite) contained in human excreta, only bacteria and viruses are likely to be small enough to be transmitted through the soil and aquifer matrix to groundwater bodies (Naggy and Oslo, 1985; Fong and Lipp, 2005). Microbial contamination of groundwater remains a major concern; especially where many dispersed shallow dug wells or boreholes provides unprotected and untreated domestic water supplies for the users. Groundwater is susceptible to faecal contamination and may contain harmful viruses, bacteria, parasites, protozoa, and helminths which may cause some diseases (Fecham et al., 1983). Viral protozoa found in groundwater system may include enteric viruses such as *Echovirus*, *Hepatitis* A and E, Rotavirus and Norovirus, enteric bacteria

pathogen such as Escherichia coli (E. coli), Salmonella spp, Shigella spp, and vibrio cholera. parasite protozoa such Cryptosporidium, Cyclospora cayetanensis, Entamoeba histolytica, Giardia intestinalis and helminths (parasite worm) such as Ascaris lumbricoides, Trichuris trichura, Ancylostoma duodenale (Hookworm), Schistosomiasis spp, (Tyring et al. 2006). Ingestion of these pathogens can cause gastroenteritis or in certain rare cases, serious illness such as meningitis, hepatitis, or myocarditis (Moore et al. 2014). WHO, (2011) noted that infectious diseases caused by pathogenic bacteria, viruses, and parasites (proto- zoa and helminths) are the most common and widespread health associated with drinking-water.

Abakaliki semi-urban is composed of a teaming population of about 79,280 (NPC, 2006). This population is made up of over 80% of the middle- and lower-class earners who cannot afford the luxuries of a good life including potable water supply. Before the recent development in the area, the area has been associated with the scourge of guinea worm in Nigeria (Abolarin, 1981; WHO, 1980). Odoh, et al; (2012) maintained that groundwater has strategically remained a valuable resource in the area, due to the lack of surface water reservoirs. Also, the economic, political, and educational development in the area has led to consequent increase in population, which has eventually increased the demand for water. This demand has however, subjected the populace to sources of water alternative supply. Boreholes, hand dug wells, stagnant ponds and even abandoned mine pond waters have recently served as these alternatives (Obasi, 2017, Obasi and Akudinobi, 2019b; 2020). There is hand dug wells in almost every compound amongst the middle- and lowerclass earners. Factors such as high population growth and poor development plan can affect the use of hand dug wells. More importantly,

seepage from septic tanks, pit latrine, open waste dumps, poor hygiene and high erosion are recipes for environmental pollution in hand dug wells (Reynoid and Bareth, 2003, Gerba and Smith, 2005; Arnone and Walling, 2007). WHO, (2012) recommended that wells should be located at least 30m away from latrines and 17m from septic tanks to prevent groundwater contamination. These shallow groundwater aquifers are therefore susceptible to faecal contamination and may contain harmful viruses, bacteria, parasites, protozoa, and helminths which may cause some diseases. Moreso, infectious diseases caused by pathogenic bacteria, viruses and parasites are the most common and widespread health risk associated with domestic uses of water. It is against this background, that this study is necessitated. It centres on the middle- and lower-class population areas like Nkaliki, Kpirikpiri and Presco where over 90% of the populace depend on hand-dug wells as their major source of water supply. The Nkaliki areas represent a medium class population while Kpirikpiri and Presco areas have very high demography of undergraduate population of Ebonyi State University. This population cannot afford potable water supply. Hence, the need of this study to determine the microbial load of hand dug wells which serve this population of semi urban areas of Abakaliki.

SITE DESCRIPTION, GEOLOGY AND PHYSIOGRAPHY

The Abakaliki area of Ebonyi State has been characterized with fast growing urban population due to recent socio -economic and political developments in the area. The area is the seat of the Ebonyi State University and the center of political and economic activities in the state. Geologically, the area is underlain by the Asu River Group (Fig 1). The lithology of the area consists mainly of well-indurated fractured shales, argillaceous

sandstones, siltstones, and mudstones. The sandstones and siltstones are exposed at the hills and ridges while the shales and mudstones occupy the lowlands. The deposits are the oldest sedimentary rocks in southeastern Nigeria (Kogbe, 1976). It is exposed variously in the Abakaliki area where they are often referred to as the Abakaliki Shales. These shales differ in their physical characteristics. Some are fissile while others are indurated. The occurrence of intrusions of pyroclastic rocks in the area is obvious in many places (Olade, 1979). The Abakaliki area has been renowned for its high tectonic activities which occurred in the Santonian orogenic times (Kogbe, 1976). This has led to the fracturing of the shales, and hydrothermal inclusion of mineral deposits in the area. These fractures now form the basis for

MATERIALS AND METHODS

Water sample collection

A total of eighty (80) water samples were collected from hand-dug wells in the areas of interest i.e., Nkaliki (n=30), Kpiripkiri (n=30) and Presco (n= 20). All wells were georeferenced. Clean and sterile bijou bottles were used. These bottles were sterilized in autoclave at 121°c for 20 minutes. At each point of collection, the pre-sampled bottle was opened and the bailer(fetcher) of the well was used to fetch the water of the well and poured into the bijou bottle. The samples were not totally filled to allow for any biological or chemical process. They were tightly sealed and immediately put in icechest under 4°C before transportation to the

groundwater development and solid mineral exploration in the area (Odoh, *et al*; 2012; Obasi. 2017).

The geomorphology of the area is controlled by the prevalent structural, lithologic, and physico-chemical factors. The topography could be described as comprising irregular ridges and gentle sloping hills. The elevation of the highlands ranges from 45m to 65m above mean sea level, while the lowlands rise to an average of about 30m. The area is characterized by a uniform sloping drainage slightly tilted eastward. This is due to the Basement complex rocks of the Oban massif, Obudu hills and Mamfe Embayment, which bound the area to the east (Chukwu and Obiora, 2014). These topographic features are controlled by the bedrock geology.

laboratory for analysis (APHA, 2005). All samples were collected in a day as the areas are near and within the town. Coliform count analysis using the spread plate method was done. The results were analysed and compared with the World Health Organization (WHO, standards for water quality. The analysis of the water sample was performed according to standard method (APHA 2005). One hundred millilitre (100ml) aliquots of the water samples were measured with a sterile measuring cylinder. After setting up the membrane filtration apparatus with a membrane filter of 90mm diameter 0.45µm pore size and the vacuum pump.

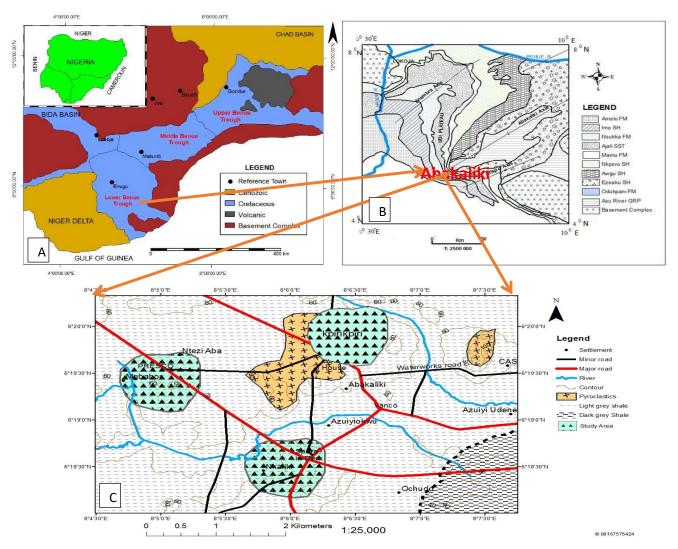
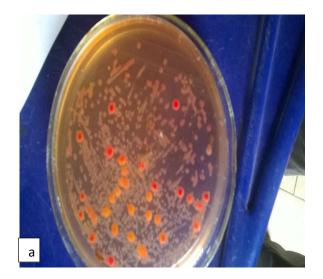



Figure 1: (A) Geologic Map of the Lower Benue Trough (LBT) Zaborski, 1998) (B) Stratigraphic Settings of the LBT (Nwajide, 2013) (C) Geological map the study area showing dominant rock types and sample locations.

The measured 100ml water samples were filtered through the membrane filter (Millipore fitter 0.45µm). Mackonkay and Eosine Methylene Blue agar were used to culture the samples. Mackonkay agar was used for samples from the Nkaliki area and Eosine Methylene Blue agar were used for samples from the Kpirikpiri and Presco areas. The filters were inoculated into plates

containing solidified sterile agars and the plates were labelled accordingly. The agar plates were then incubated overnight at 35^{0} C -44.5^{0} C. After 22-24 hours of incubation, the plates were observed for growth of coliform and the colony forming units were counted using colony counter machine as shown below:

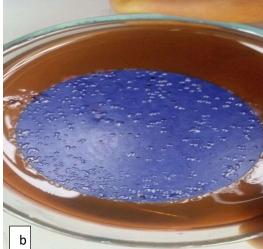
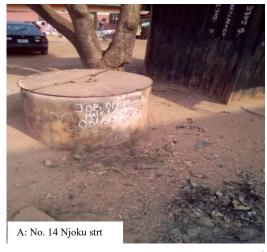


Plate 1: Bacterial colonies in agars. (a): Pinkish colonies indicating the presence of coliform bacteria in Mackonkay agar, (b): Bluish colonies indicating the presence of coliform bacteria Eosine Methylene Blue agar.


RESULTS AND DISCUSSION

The summary of results of the microbial analysis is presented in appendix 1

Discussion

High concentrations of coliform (up to 29.0 x10⁴cfu/ml) were recorded in the shallow aquifers of semi- urban areas of Abakaliki. The World Health Organization recommends a zero per colony number of E. coli and coliform count in safe water. In the Nkaliki

area, only wells OP1, OP11, OP16 and OP 17 has 0 cfu/ml concentration of E. coli in line with WHO stipulation. The 0 cfu/ml of these wells is due to the good hygiene and proper construction of the well. This protects the wells from runoffs which would introduce contaminants into the wells (Plates 2a-d). Wells with poor hygienic and environmental conditions showed high concentration of microbial coliforms (plate3).

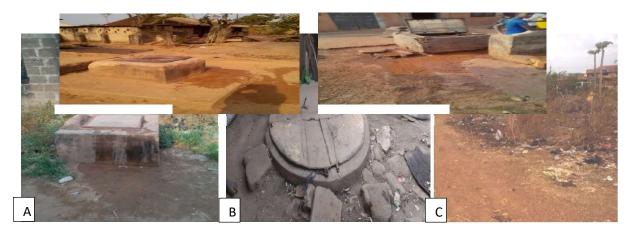


Plate 3: Poorly located wells: a: located in a nearby bush and uncompleted building where people defecate. b: Unhygienic and low-lying well (OP20); c: well, cited in the bush and low-lying in Nkaliki (OP 22)

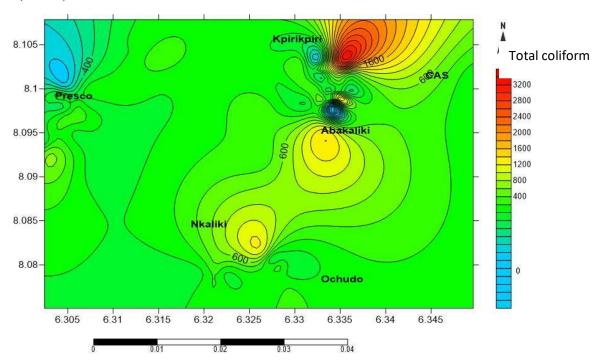


Figure 2: Contoured distribution map of total coliform in the Abakaliki area.

In the Kpirikpiri area, only wells OP35, OP36 and OP40 has 0 cfu/ml concentration of coliform in line with WHO stipulation meanwhile, 90% of the samples shows coliform concentration exceeding the permissible limit. This is very high especially in wells OP50 (25.0 x 10⁴ cfu/ml; 7, Awufia

str); OP51 (12.5 x 10³ cfu/ml; 8, Awufia str); OP53 (11.2 x 10⁴ cfu/ml; 4, Igweogbofia str); OP55 (25.0 x 10⁴ cfu/ml; 3a, Okorowokoro str); OP59 (29.0 x 10⁴ cfu/ml; 10, Nri str); OP60 (28.0 x 10⁴ cfu/ml 28, Igweogbofia). This high concentration of coliform could be because of not only humans and animal's

faeces from surrounding bushes which has migrated into the wells but the use of unhygienic buckets and bails for bailing water from the wells (see plate 4). Obasi *et al.*, 2022 noted that the fracture systems in the Abakaliki area can aid contaminant migration in the shales. Also, faeces can migrate through fractures in the shales from

improperly constructed pit latrines and septic tanks. During precipitation, faecal contaminants from the surrounding bushes are carried along with surface runoffs and are deposited into the poorly constructed well and as such contaminating the water and making it unsafe for domestic use.

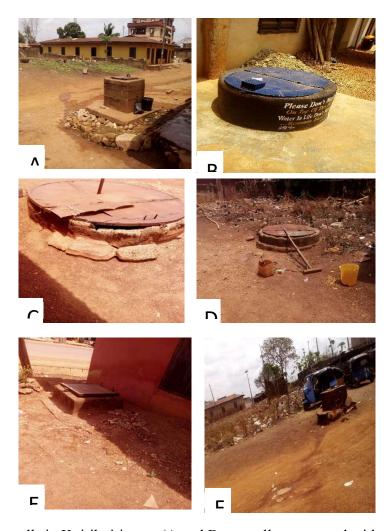


Plate 4: Hand-dug wells in Kpirikpiri area. (A and B are well constructed with nil coliform). (C, D and E are badly constructed, almost the same height with ground level). (F is in an unhygienic environment).

In Presco area, the highest coliform count (CFU/100ml) was observed from wells OP68 (Oversea Lodge, 2.27 x 10⁵ CFU/ml); and OP73(Gist Lodge 2.16 x10⁵ cfu/ml). The least counts were obtained in wells OP71

(Power Base Lodge 0.22 X10⁵) and OP80 (St. Luke Catholic Church 0.32 X 10⁵). Nwachukwu, *et al* 2013 observed high counts of bacterial pathogens in most wells in Aba. Similarly, unacceptably high bacterial counts

have been reported from several hand-dug wells in Nigeria (Olajubu and Ogunika, 2014; Obi, 2011; Ibe, and Okplenye, 2005). Apart from human or animal faecal matter emanating from surface water runoffs, and seepages from broken septic tanks, it was observed that the unhygienic practices of undergraduate students who inhabit this area has contributed to the high coliform concentration of these wells. Most of the wells are uncovered, and the bailers (fetchers) look dirty and untidy. Faecal contaminants from nearby bushes and gutters and seepage from sewage or septic tank which are near wells could also contribute to contamination (plate 5).

The bacterial pathogens isolated from the various water samples in this study are of public health importance because these microbes are implicated in a plethora of human infections (Table 1). The presence of these microbes in water (especially above the acceptable limits) also signifies that these water sources are not potable and thus could not be used for drinking purposes and other domestic processes. Yet the student and lower-class population solely depends on this water for their daily uses. High number of total coliform and the presence of E coli in the water sources is an indication of faecal contamination from pit latrines, leakage from septic tanks and run off from nearby bushes which are often used as off-site for open

defecation (Agwu et al., 2013, Craun, et al. 2010, Adekoyeni and Salako, 2012). These organisms may not be dangerous in themselves, but their presence signifies that these household water sources are being contaminated with fresh faecal matter of either human or animal sources or both. This is also an indication that other faeco-orally transmitted organisms including protozoans such as Balantidium coli, Giardia lamblia, Entamoeba histolytica and Cryptosporidium parvum, in addition to intestinal helminth parasites may be present in these water sources. These are indicated by the most common symptoms of waterborne illness like nausea, vomiting. and diarrhoea (Nwachukwu and Gerba, 2006; Moore et al, 2014). In facts, the elderly, and those with compromised immune systems may suffer more severe effects, this is because their immune system cannot fight diseases as supposed. In extreme cases, some pathogens may infect the lungs, skin, eyes, nervous system, kidneys, or liver and the effects may be more severe, chronic, or even fatal. The various hazards that can be presented in water can have very different health outcomes (Ashbolt, 2004). Some outcomes are mild (diarrhoea), whereas others can be severe (cholera, haemolytic uraemic syndrome associated with Escherichia coli or cancer). Some are acute (diarrhoea), whereas others are delayed (infectious hepatitis or cancer).

Plate 5: Poorly sited and constructed hand-dug wells in Presco. (A and B are located close to public gutter). (C and F are constructed the same height with ground level). (D and E located at unhygienic environment).

Table 1: pathogens found in groundwater (adapted from Ashbolt, 2004; Chakrabarti and Chakrabarti, 2009)

PATHOGENS	MAJOR DISEASES	SOURCES		
Bacteria				
Escherichia coli	Gastroenteritis haemolytic Uraemic syndrome (enterotoxin E. coli)	Human faeces		
Salmonella spp.	Enterocolitis, endocarditis, meningitis, pericarditis, reactive arthritis, pneumonia.	Human and animal faeces		
Shigella spp.	Gastroenteritis dysentery, reactive arthritis	Human faeces		
Campylobacter jejuni	Gastroenteritis, guillain-Barre syndrome	Human and animal faeces		
Yersinia spp.	Diarrheal, reactive arthritis	Human and animal faeces		
Vibrio cholera	Cholera	Human faeces and		
		freshwater zooplankton		
Legionella spp.	Pneumonia (legionnaires' disease)	Thermally enriched water		
Pseudomonas aeruginosa	Pneumonia, urinary tract infections, bacteraemia	Soil and water		
Mycobacterium spp.	Pulmonary disease, skin, and soft tissue disease.	Soil and water		
Viruses				
Poliovirus	Poliomyelitis	Human faeces		
Coxsackievirus	Fever, pharyngitis, rash, respiratory disease,	Human faeces		
	diarrhoea, haemorrhagic conjunctivitis, myocarditis, pericarditis, aseptic, meningitis, encephalitis, reactive insulin- dependent diabetes			
Echovirus	Respiratory disease, aseptic meningitis, rash, fever.	Human faeces		
Enteroviruses 68-71	Polio-like illness, aseptic meningitis, hand foot and mouth (E71), epidemic conjunctivitis (E70)	Human faeces		
Hepatitis A	Fever, nausea, jaundice, liver failure	Human faeces		
Hepatitis E	Hepatitis E fever, nausea, jaundice	Human faeces		
Norovirus (Norwalk virus)	Gastroenteritis	Human faeces		
Calicivirus	Gastroenteritis	Human faeces		
Astrovirus	Gastroenteritis	Human faeces		
Sapovirus	Gastroenteritis	Human faeces		
Orthoreovirus	Gastrointestinal and upper respiratory disease	Human faeces		
Rotavirus A and C	Gastroenteritis	Human faeces		
Coronavirus	Gastroenteritis	Human faeces		
Adenovirus	Respiratory disease, gastroenteritis	Human faeces		
Protozoa				
Cryptosporidium parvum	Cryptosporidiosis (gastroenteritis)	Water, human and other mammal faeces		

CONCLUSION

The assessment of the prevalence of microbial contaminants in hand dug wells in semi- urban areas of Abakaliki was carried out. These wells are recharged by shallow aquifers and have been a major source of groundwater supply for the domestic and agricultural uses of the lower-class

populations in the area. These population classes are specifically located at Nkaliki, Kpirikpiri and Presco with high population undergraduate who cannot afford the luxuries of pipe-borne water, which is mostly non available. Eighty (80) water samples from hand dug wells were collected and analysed using the Most Probable Number Technique. Over 90% of water samples analysed showed coliform concentrations above the WHO standard for drinking water. Especially in the Kpirikpiri and Nkaliki areas where colonies of E. coli, salmonella and shigella were observed, and total coliform counts recorded up to $29.0 \times 10^5 \text{ CFU/ml}$ and $26.8 \times 10^3 \text{ CFU/ml}$ CFU/ml respectively. The high concentration of coliform gives an indication of faecal contamination in the shallow aquifers of the area. This might be originated from plant debris, animal and human faeces, legumes and the atmosphere and are washed down into the wells. The utilization of such water without proper treatment poses grave danger to human and animals' health. This is because the ingestion of contaminated water poses serious health risk.

RECOMMENDATION

Since water quality is as important as its quantity and shallow aquifers of the Abakaliki area contains coliform bacteria which are high and indicate high level of faecal contamination, the following recommendation are necessary:

Proper sewage disposal system should be provided and upheld in the study area. This will minimize the rate and distribution of coliform pathogens in shallow groundwater aquifers. Good hand dug well construction practices should be upheld. Wells should be constructed with aprons that will serve as a barrier for external water that leaches down from around the entrance of the well. It should cover at least a 1.5m radius extending from the well opening and should include a

channel that diverts the wastewater to a soak away tank that is at least 15m away from the apron. Microbial investigation should be carried out periodically, this is to reduce incidence of consumption of highly contaminated water. Also, there is need to increase awareness among the people in the study area of the danger associated with the use water with high coliform concentration. The construction of pit latrines and septic tank near wells should be discouraged; this is a major cause of high coliform, especially in the Kpirikpiri area. Conflict of Interest: On behalf of other authors, the corresponding author states that there is no conflict of interest.

Data Availability Statement: Data is available on request.

REFERENCES

Abdelmonem, M. Abdellah, Hago, M., Abdel-Magid and Nadia, A. Yahia, (2012). Assessment of Drinking Water Microbial Contamination in Al-Butana Region of Sudan. *Journal of Applied Sciences*, 12: 856-862.

Abolarin, M.O. (1981). Guinea worm in a Nigerian Village. Journal of Tropical Geography and Medicine Volume 33, pp 83-88

Adekoyeni, O., and Salako, S. (2012).

Microbiological, physicochemical, and mineral quality of boreholes water in Ijebu land, Ogun State, Nigeria. Inter. *J. of Sci. Adv. Tech.* **2**(1): 23-30.

Aghamelu. O.P., Nnabo, P.N. and Ezeh, H.N. (2011). Geotechnical and environmental problems related to shales in the Abakaliki area, Southeastern Nigeria. African Journal of Environmental Science and Technology, vol.5(2), pp 80-88

- Agwu, A., Avoaja, A. G. and Kalu A. U. (2013). The Assessment of drinking water sources in Aba metropolis, Abia State Nigeria. Research Env. **3**(4): 72-6.
- Akpor, O.B. and Muchie, M. (2011). Challenges in meeting the MDGs: The Nigerian drinking water supply and distribution sector. J. Environ. Sci. Technol., 4: 480-489.
- Arnone, R.D. and Walling, J.P. (2007):
 Waterborne pathogens in urban
 watersheds. J Water Health 5: 149162.
- Althaus, H. (1983): Hygienische Bedeutung der Lebensdauer von Bakterien und Viren in Grundwasserleitern im Zusammenhang mit den Grundwassergewinnungsanlagen. In: Forum Mikroorganismen und Viren in Grundwasserleitern Munchen 1983. DVGW-Schriftenreihe Wasser. ZfGW-Verlag Frankfurt. 35: 25-40.
- American Public Health Association (APHA 1998): Standard Methods for the Examination of Water and Wastewater (20th ed) Washington DC.
- American Public Health Association (APHA 2005): Standard Methods for the Examination of Water and Wastewater (22nd ed) New York.
- Ashbolt, N.J. (2004): Microbial contamination of drinking water and disease outcomes in developing regions. Toxicology 198: 229-238.
- Chakrabarti, R., and Chakrabarti, D. (2009): Chemotherapeutics of Neglected Waterborne Parasites: Current Status and Future Perspectives. Mol Cell Pharmacol 1: 98-102.
- Chidavaenzi, F., (1997). Microbiological contaminants associated with Pit latrine-their lateral travel distance approximation, A case history in Zimbabwe.
- Chukwu, A. and Obiorah, S. C. 2014, Whole- rock Geochemistry of Basic

- and Intermediate rocks in Ishiagu area: Further evidence of Anorogenic setting of the Lower Benue Rift, Southern Nig. Turkish Jour of Earth Science 23 (427 443).
- Craun, G. F., Brunkard J. M., Yoder J. S., Roberts V. A., Carpenter J., and Wade T., (2010). Causes of outbreaks associated with drinking water in the United States from 1971 to 2006. Clin Microbiol Rev. 2010;23(3): 507–28. Key summary of waterborne disease outbreaks in the US, identifying legionellosis as the highest health burden.
- Ekanem, D., James, N., Edward E. H. and David T. (2011) Integrated Analysis of Water Quality Parameters for Cost-Effective Faecal Pollution

 Management in River Catchments

 https://doi.org/10.1016/j.watres.2011.0
 1.018
- Fechem, R. G., Bradley, D. J., Garelick, H., and Mara, D.D. (1983). In: Sanitation and Disease: Health Aspects of Excreta and wastewater management. John Wiley and Sons, N. Y. USA.
- Fong, T.T. and Lipp, E.K. (2005): Enteric viruses of humans and animals in aquatic environments: health risks, detection, and potential water quality assessment tools. Microbiol Mol Biol Rev 69: 357-371.
- Gerba, C.P. and Smith, J.E., Jr. (2005): Sources of pathogenic microorganisms and their fate during land application of wastes. J Environ Qual 34: 42-48.
- Gleeson C., Gray N (1997): The coliform index and water borne disease: problems of microbial drinking water assessment. E and FN spon London
- Ibe, S. N. and Okplenye, J.I. (2005)

 Bacteriological Analysis of Borehole
 Water in Uli, Nigeria. African Journal
 of Applied Zoology and Environmental
 Biology. 7:116-119. I

- Ingrid, M., Verstrancten, Greg S. Fetterman, Sonja, K. Sebree M. T. Meyer, and T. D Bullen (2004). Septic Waste Affecting Drinking Water from Shallow Domestic Wells Along the Platte River in Eastern Nebraska, Prentice Hall. Pp1-4.
- Kabir, M.A., A.Q. Al-Amin, G.M. Alam, and M.A. Matin, 2011. Early childhood mortality and affecting factors in developing countries: An experience from Bangladesh. Int. J. Pharm., 7: 790-796.
- Kogbe, C. A. (1976). The Cretaceous and Paleogene sediments of Southern Nigeria: In Geology of Nigeria. Kogbe C. A. (ed). Rock View. Jos. Pp.325 – 334.
- Leclerc, H., Mossel, D.A., Edberg, S.C., and Struijk, C.B. (2001): Advances in the bacteriology of the coliform group: their suitability as markers of microbial water safety. Annu Rev Microbiol 55: 201-234.
- Leclerc, H., Schwartzbrod, L., and Dei-Cas, E. (2002): Microbial agents associated with waterborne diseases. Crit Rev Microbiol 28: 371-409.
- Mahajan, G. (2011) Evaluation and Development of Groundwater. APH publishing corporation, New Delhi315pp
- Maluski, E.A., Hornor, S.G and Buck, J.D. (1995). Pollution indicators and other microorganisms in river sediments J. wat pollut cont. fed, 50:13-19
- Mirza, A. T. M. Tanvir Rahman, A. H. M. Saadat, M. D., Safiqul Islam, M.D., Abdullah, Al-Mansur and Shamim, A. (2017). Groundwater characterization and selection of suitable water type for irrigation in the western region of Bangladesh Appl Water Sci (2017) 7:233–243
- Moore, S. M., Shannon, K. L, Zelaya, C. E., Azman, A. S. and Lessler, J. Epidemic risk from cholera introductions into

- Mexico. PLoS Curr. 2014;6. doi: 10.1371/currents.outbreaks.c04478c7fb d9854ef6ba923cc81eb799. Edition 1.
- Nagy, L.A., and Olson, B.H. (1985):

 Occurrence and significance of bacteria, fungi and yeasts associated with distribution pipe surfaces. Proceedings of the American Water Works association, Water quality technical conference. Denver, Colorado:

 American Water Works Association: 213-238.
- National Population Commission (NPC) 2006
- Nwachukwu, I. O., Vincent E. A., and Heleen O. N., (2013). Bacteriological Assessment of selected Boreholes water samples in Umuahia North L.G.A. Abia State Nigeria. J. Env. Treat Tech. 1: 117-21
- Nwajide, C. S. (2013), Geology of Nigeria's Sedimentary Basins, CSS Bookshops Limited, Lagos, Nigeria.
- Obasi, P. N. (2017) Hydrochemical and Geochemical Assessment of the Mining Areas of Abakaliki, Ebonyi State, Southeastern Nigeria, Nnamdi Azikiwe University, Awka. Unpublished Ph.D. thesis.
- Obasi, P. N. and Akudinobi, B. E. B (2020)
 Potential Health Risk and Levels of
 Heavy Metals in Water Resources
 of Lead- zinc Mining Communities of
 Abakaliki, Southeast Nigeria.

 Springer- Applied Water Science https
 //doi.org/ 10.1007/s40808-020-008002
- Obasi, P. N., and Akudinobi, B. E. B., (2019a), Pollution Status of arable Soil and Stream Sediment in the Mining Areas of Abakaliki, Lower Benue Trough. Springer International jour. of Envi science and technology. https://doi.org/10.1007/s13762-019-02337-z

- Obasi, P. N., and Akudinobi, B. E. B. (2019b), Heavy Metals Occurrence, Assessment and Distribution in Water Resources in the Lead- Zinc Mining Areas of Abakaliki, Southeastern Nigeria. Springer International jour. of Envi science and technology. https://doi.org/10.1007/s13762-019-02489-y
- Obi, C. N. (2011): The microbiological and physiochemical Analysis of Borehole water used by off-campus students of Michael Okpara University of Agriculture, Umudike, Abia State Nigeria. Res. J. Bio. Science.
- Odoh, B. I., Utom, A.U. and Nwaze, S.O. (2012). Groundwater Prospecting in fractured shale aquifer using an integrated suite of geophysical method: A case study from Presbyterian Church, Kpirikprir Ebonyi State, Southeastern Nigeria. *Journal of Geosciences*. Vol.01, pp5-6.
- Okafor, N. (1985). Aquatic and Microbiology. Fourth edition, Dimension Publishers, Enugu, Nigeria.
- Okpokwasili, G. C. and T. C. Akujobi (1996). Bacteriological Indicators of Tropical Water Quality. *Environ. Toxical Water Quality*. 11:77-82.
- Olade, M. A. (1979). The Abakaliki pyroclastic of Southern Benue Nigeria, their petrology and tectonic significance. *Journal of Mining and Geology*, 16: 17-26.
- Olajubu, F. A., Ogunika F. (2014). Assessment of microbiological properties of Boreholes, Hand-dug

- well water samples from Akungba Akoko, Ondo State, Nigeria. *Inter. J. pharma. Sci. and Res.* **5**(7): 367 74.
- Olivia, P. N. (2022) Groundwatergovernance.org
- Reynolds, J. H., and Barrett, M. H. (2003).

 A review of the effects of sewer leakage on groundwater quality.

 Water and Environment Journal 17: 34-39.
- Stevens, M., Ashbolt, N. J. and Cunliffe, D. (2003). Review of Coliforms as Microbial Indicators of Drinking Water Quality. National Health and Medical Research Council. Australian Government:1-42.
- Todd, D. K. (1980), Groundwater Hydrology, 2nd edition. John Willey and sons, New York.
- Yusuf, K.A., 2007. Evaluation of ground water quality characteristics in Lagos-City. J. Applied Sci., 7: 1780-1784.
- WHO, 2008. Guidelines for Drinking-Water Quality: Incorporating the First and Second Addenda Volume 1: Recommendations. 3rd Edn., World Health Organization, Geneva, Switzerland, ISBN-13: 9789241547611, Pages: 688.
- WHO (2012). Guidelines for Standard
 Operating Procedures for
 Microbiology: In Bacteriological
 Examination of Water. World Health
 Organization Regional Office for
 South-East Asia.

Appendix 1: Results of bacteriological analysis of waters analysed in the area.

	S/N	Sample code	Address	coor	dinates	Depth (m)	Ave. No. of Colonies per	Colony
							plate	
	1	OP 1	14 Njoku strt. old timber shed Nkaliki	N06° 18 ' 55.9"	E008° 05 ¹ ' 57.6 "	3.9	Nil	No growth
	2	OP 2	25 Nkaliki road, Nkaliki	N06° 18' 15.9"	E008° 05 ' 55.6"	2.9	17	E. coli and others
3	3	OP 3	20 Nkaliki road, Nkaliki	N06° 18 ' 15.8 "	E008°05 ' 57.0	3.5	78	E. coli
2	1	OP 4	16 Aguncha str. Nkaliki.	N06° 18 ' 22."	E008° 05 ' 43.4	3.7	6	Others
5	5	OP 5	15 Aguncha strt. Nkaliki.	N06° 18 ' 23.9 "	E008° 05 ' 23.0 "	3.5	28	E. coli
	5	OP 6	26 Nkaliki road, Nkaliki	N06° 18 ' 17.1 "	E008° 05 ' 50.3 "	3.4	55	Salmonella
7	7	OP 7	1 Okereke str. Nkaliki.	N06° 19 ' 36.0 "	E008° 05 ^I ' 53.5 '	2.8	268	E. coli
5	3	OP 8	11 Ibagi strt. Nkaliki.	N06° 18 ' 21.1"	E008° 05 ' 53.8 "	3.6	108	E. coli
)	OP 9	6 Ibagi strt. Nkaliki.	N06°18 ' 23.09 "	E008° 05 ' 54.5 "	2.1	45	Others
	10	OP 10	2 Ibagi strt. Nkaliki.	N06° 18 ' 22.8"	E008° 05 ' 55.2 "	4.2	12	Salmonella
1	11	OP 11	57 Nkaliki Road, Nkaliki.	N06° 18 ' 10.2 "	E008° 05 ' 42.2 "	4.8	Nil	No growth
1	12	OP 12	11 Afoezuna str. off Nkaliki road	N06° 18 ' 35.2 "	E008° 05 ' 56.3 "	3.2	24	E. coli
1	13	OP 13	30 Afoezuna strt. off Nkaliki road.	N06° 18 ' 30.4"	E008° 05 ' 57.3 "	2.9	52	Shigella
	14	OP 14	44 Afoezuna strt. off Nkaliki road.	N06° 18 ' 24.9 "	E008° 05 ' 58.3 "	4.0	38	E. coli
	15	OP 15	20 Nkaliki road Nkaliki	N06° 18 ' 19.3 "	E008° 05 ' 54.4 "	3.8	8	E. coli
	16	OP 16	21Nkaliki road Nkaliki	N06° 18 ' 18.9"	E008° 05 ' 54.4 "	5.7	Nil	No growth
]	17	OP 17	22 Nkaliki road Nkaliki	N06° 18 ' 18.9 "	E008° 05 ' 52.2	4.6	Nil	No growth
1	18	OP 18	26 Nkaliki road Nkaliki	N06° 18 ' 20.6"	E008° 05 ' 50 "	3.3	300	E. coli
	19	OP 19	19 Nzekwe str. Nkaliki	N06° 18 ' 09.3"	E008° 05 ' 35.9 "	2.3	222	E. coli
	20	OP 20	21 Nzekwe str. Nkaliki	N06° 18 ' 08.8"	E008°05 ' 37 "	2.6	6	E. coli
	21	OP 21	14 Njoku str. old timber shed Nkaliki	N06° 18' 15.9"	E008° 05' 57.6"	3.9	Nil	No growth
	22	OP 22	24 Nkaliki road Nkaliki	N06° 18' 15.9"	E008° 05' 55.6"	2.9	18	E. coli
2	23	OP 23	20 Nkaliki road Nkaliki	N06° 18' 15.8"	E008° 05' 57.0"	3.5	232	E. coli
	24	OP 24	16 Aguncha str. Nkaliki Abakaliki	N06° 18' 22.1"	E008° 05' 43.4"	3.7	6	shigella
	25	OP 25	15 Aguncha str. Nkaliki.	N06° 18' 23.9"	E008° 05' 28.0"	3.5	28	salmonella
	26	OP 26	26 Nkaliki road Nkaliki	N06° 18' 17.1"	E008° 05' 50.3"	3.4	55	salmonella
	27	OP 27	19 Awgu strt. Azuiyiokwu	N06° 18' 49.0"	E008° 06' 13.9"	2.8	188	E. coli
	28 29	OP 28 OP 29	14 Awgu strt. Azuiyiokwu 13 Awgu strt. Azuiyiokwu	N06° 18' 45.4"	E008° 06' 17.3"	3.6 2.1	38 45	salmonella
	30	OP 30	55 Afikpo road Abakaliki	N06° 18' 46.1" N06° 18' 44.9"	E008° 06' 16.5" E008° 06' 22.5"	4.2	43	salmonella shigella
	31	OP 31	19 Mgbowo str. Kpiri-kpiri	N06° 19' 58.2"	E008° 06' 09.6"	3.2	68	E. coli
	32	OP 32	9 Mgbowo str. Kpiri-kpiri	N06° 19' 56.9"	E008° 06' 08.1"	2.9	33	E. coli
	33	OP 33	3 Anikpe str. Kpiri-kpiri	N06° 20' 02.0"	E008° 05' 46.9"	4.0	12	salmonella
	34	OP 34	19 Igweogbuofia str. Kpiri-kpiri	N06° 19' 59.8"	E008° 06' 12.1"	3.8	8	E. coli
	35	OP 35	22 Gilbert stt. Kpiri-kpiri	N06° 19' 45.8"	E008° 06' 15.7"	5.7	Nil	No growth
	36	OP 36	7 Nri strt. Kpiri-kpiri	N06° 19' 43.2"	E008° 06' 01.8"	4.6	Nil	No growth
	37	OP 37	38 Ogbaga road Kpiri-kpiri	N06° 19' 36.0"	E008° 05' 32.1"	3.3	300	E. coli
	38 39	OP 38 OP 39	25 Ogbaga road Kpiri-kpiri 4 Igweogbuofia str. Kpiri-kpiri	N06° 19' 42.3"	E008° 06' 28.3"	2.3 2.6	198 6	E. coli
	10	OP 40	4 Ogbuodudu strt. Kpiri-kpiri	N06° 19' 52.01" N06° 19' 56.2"	E008° 06' 10.8" E008° 06' 02.6"	1.8	16	shigella E. coli
	41	OP 41	4, Enugukwu str, Kpiri-kpiri	N06° 19' 54.3"	E008° 05' 51.5"	3.2	26	E. coli
	12	OP 42	8, Ekwulobia str, Kpiri-kpiri	N06° 19' 54.8"	E008° 05' 54.1"	2.9	28	shigella
	13	OP 43	6, Moneke str, Kpiri-kpiri	N06° 20' 01.7"	E008° 05' 57.6"	2.0	10	E. coli
	14	OP 44	17, Awkuzu str, Kpiri-kpiri	N06° 19' 59.8"	E008° 05' 55.5"	4.1	297	E. coli
4	15	OP 45	6, Awkuzu str, Kpiri-kpiri	N06° 20' 05.1"	E008° 05' 54.3"	3.6	20	E. coli
	16	OP 46	4, Awkuzu str, Kpiri-kpiri	N06° 20' 06.0"	E008° 05' 53.7"	4.0	51	E. coli
	17	OP 47	2, Awkuzu str, Kpiri-kpiri	N06° 20' 06.5"	E008° 05' 53.3"	3.3	68	Salmonella
	18	OP 48	14, Okorowokoro str, Kpiri-kpiri	N06° 20' 04.8"	E008° 05' 55.7"	3.3	1110	E. coli
	19 50	OP 49	2, Ogbaga rd, Kpiri-kpiri	N06° 19' 53.7"	E008° 06' 04.6"	2.9	70 255	E. coli and others
	50 51	OP 50 OP 51	7, Awufia str, Kpiri-kpiri 8, Awufia str, Kpiri-kpiri	N06° 19' 58.2" N06° 19' 58.4"	E008° 06' 07.7" E008° 06' 07.1"	2.8 3.9	255 125	E. coli E. coli
	52	OP 51 OP 52	16, Awufia str, Kpiri-kpiri	N06° 20' 58.7"	E008 06' 07.1" E008° 06' 05.5"	3.9 4.1	80	Shigella
	53	OP 52 OP 53	4, Igweogbofia str, Kpiri-kpiri	N06° 20' 03.5"	E008° 06' 01.9"	3.7	112	E. coli and others
	54	OP 54	6, Igweogbofia str, Kpiri-kpiri	N06° 20' 02.0"	E008° 06' 02.3"	3.7	55	E. coli
	55	OP 55	3a, Okorowokoro, Kpiri-kpiri	N06° 20' 05.5"	E008° 05' 58.7"	2.5	250	E. coli and others
5	56	OP 56	30, Ogbaga rd, Kpiri-kpiri	N06° 20' 05.5"	E008° 05' 59.8"	3.4	26	salmonella
	57	OP 57	5, Owa str, Kpiri-kpiri	N06° 20' 08.4"	E008° 05' 57.8"	2.9	96	E. coli
5	58	OP 58	1, Gilbert str, Kpiri-kpiri	N06° 20' 11.1"	E008° 06' 03.8"	3.6	20	salmonella

59	OP 59	10, Nri str, Kpiri-kpiri	N06° 20' 09.7" E	E008° 06' 05.6"	3.1	290	E. coli and others
60	OP 60	28, Igweogbofia str, Kpiri-kpiri	N06° 20' 07.4" H	E008° 06' 10.1"	4.2	2800	E. coli and others
61	OP 61	Mbama lodge, Presco	N06 ⁰ 19 ¹ 33.911 H	E008 ⁰ 041 ³⁸ .9 ¹¹	2.5	43	Others
62	OP 62	Haget lodge, Presco	N06 ⁰ 19 ¹ 37.211 H	E008 ⁰ 041 ⁴² .7 ¹¹	3.7	67	Shigella
63	OP 63	Authentic lodge, Presco	N06 ⁰ 19 ¹ 37.811 H	E008 ⁰ 041 ⁴³ .1 ¹¹	4.1	85	E. coli
64	OP 64	Oversea hostel road, Mgbabor Echara,	N06 ⁰ 19 ¹ 21.911 H	E008 ⁰ 041 ³⁰ .2 ¹¹	3.4	121	E. coli and others
65	OP 65	Paddy Express lodge, Presco	N06 ⁰ 19 ¹ 19.211 E	E008 ⁰ 041 ⁴⁰ .9 ¹¹	2.4	86	E. coli
66	OP 66	Prestige lodge, Presco	N06 ⁰ 19 ¹ 18.011 E	$E008^0 04^{142}.8^{11}$	4.2	128	E. coli and others
67	OP 67	God's favour house, oversea	N06 ⁰ 19 ¹ 18.011 E	$E008^0 04^{143}.9^{11}$	3.0	130	E. coli
68	OP 68	Oversea lodge, Presco	N06 ⁰ 19 ¹ 17.11 E	$0008^0 04^{144}.9^{11}$	3.8	227	E. coli
69	OP 69	Opposite oversea, Presco	N06 ⁰ 19 ¹ 14.211 E	$E008^0 ext{ } 04^{144}.9^{11}$	3.9	166	salmonella
70	OP 70	Bethel lodge, Presco	N06 ⁰ 19 ¹ 37.711 E	$E008^0 04^{151}.0^{11}$	2.6	122	E. coli and others
71	OP 71	Power-base hostel, Presco	N06 ⁰ 19 ¹ 38.011 E		2.9	22	E. coli
72	OP 72	82 DIV. lodge, Presco	N06 ⁰ 19 ¹ 39.711 E		3.0	212	E. coli and others
73	OP 73	Gist lodge, Presco	N06 ⁰ 19 ¹ 41.411 E	0008^{0} $04^{147}.6^{11}$	3.9	216	E. coli and others
74	OP 74	Choice lodge, Presco	N06 ⁰ 19 ¹ 41.411 E	$0008^{0} 04^{149}.1^{11}$	4.0	36	Others
75	OP 75	Bahanus De Royale, Ezza Road.	N06 ⁰ 19 ¹ 39.411 E	$E008^{0} ext{ } 04^{144}.7^{11}$	2.9	156	Salmonella
76	OP 76	Destiny lodge		$E008^{0} 04^{1.44}.0^{11}$	3.3	120	E. coli
77	OP 77	74 Ezza Road, Presco	N06 ⁰ 19 ¹ 40.711 E		2.9	66	E. coli
78	OP 78	70 Ezza Road, Presco	N06 ⁰ 19 ¹ 41.211 E	$E008^{0} ext{ } 04^{140}.8^{11}$	2.2	55	E. coli
79	OP 79	N0 I Emmanuel close, Presco	N06 ⁰ 19 ¹ 44.511 E		3.6	142	E. coli
80	OP 80	St. Luke's catholic church, Ezza	N06 ⁰ 19 ¹ 44.611 E	$008^0 04^{145}.9^{11}$	3.9	32	E. coli
		n 1 n					

Road, Presco WHO, 2012 0CFUper 100ml of water?