Delineating Groundwater Potential Zones in Parts of North Central Nigeria, Using Geographical Information System (GIS) and Analytical Hierarchical Process (AHP) Techniques

1*Yusuf, M.A.; ¹Arowolo, M.O.; ²Alao, J.O.; ³Abiye, T.A.; ¹Ibrahim, K.O.; ¹Oyeleke, T.A.; ¹Omotoso, O.A.; ¹Iheme, K.O.; ⁴Bakare, U.T.

Department of Geology and Mineral Sciences, University of Ilorin, Ilorin, Nigeria.
 Department of Physics, Air Force Institute of Technology, Kaduna, Nigeria.
 School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa.
 National Centre for Hydropower Research and Development (NACHRED)

*Corresponding author: <u>asiribo.ma@unilorin.edu.ng</u>

ABSTRACT

This project delineates groundwater potential zones in Kaiama, North-Central Nigeria, using Geographical Information System (GIS) and Analytical Hierarchy Process (AHP) techniques. Eight critical thematic layers, including geomorphology, lineament density, geology, slope, land use land cover (LULC), drainage density, elevation, and aspect, were integrated using the AHP method. The process was integrated into the GIS environment to generate a comprehensive groundwater potential map. The groundwater potential map obtained was classified as very high, high, average, low, and very low groundwater potential zones. The result showed that 15 %, 6 %, 13 %, 21 %, and 44 % of the study area fall under a very high, high, average, low, and very low groundwater potential zone, respectively. Vertical Electrical Sounding (VES) data from 20 locations across the study area were used to validate the accuracy of the delineated groundwater potential zones. The validation process employed Receiver Operating Characteristic (ROC) analysis, comparing the VES data with the generated groundwater potential map. The Area Under the Curve (AUC) was calculated to assess the model's predictive accuracy yielding a moderate value of 0.60. The findings from this research showed that the integration of GIS, Remote sensing (RS), and, the multi-criteria decisionmaking approach (MCDA) based on (AHP) techniques provide a reasonable framework for groundwater potential delineation and exploration.

Keywords: Remote Sensing, MCDA, Geomorphology, Lineament density, ROC, AUC

INTRODUCTION

Groundwater accounts for approximately one-third of global freshwater abstractions (Das et al. 2019). It is a crucial natural resource for economic and social development in regions with scarce water supplies (Kordestani et al. 2019). All economic activities rely heavily on groundwater, either directly or indirectly. However, factors such as underlying geology, chemical weathering intensity,

recharge efficiency, groundwater level, and surface element origins significantly impact groundwater resources, whereas surface water is more susceptible to pollution (Yıldırım 2021). Due to its proximity to the surface, surface water naturally has a lower mineral composition than groundwater, making it more vulnerable to contamination from human activities (Gbosh *et al.* 2020). Moreover, building surface water extraction infrastructure for various uses is generally more expensive and requires a

larger area compared to groundwater extraction sites.

Identifying and exploring groundwater in a given region can be challenging due to its concealed nature. making detection difficult. Traditional methods of groundwater exploration, such as drilling hydrogeological, geological, geophysical strategies, are not only expensive and time-consuming (Jha et al. 2010) but also may overlook various factors influencing groundwater movement and occurrence (Oh et al. 2011). To address these limitations, researchers employed various techniques, including logistic regression (Rizeei et al. 2018), weight of evidence (Rahmati et al. 2016), fuzzy logic (Halder et al. 2020), machine learning techniques like boosted regression tree (Prasad et al. 2020), random forest (Norouzi and Moghaddam 2020), support vector machine (Pourghasemi et al. 2020), multivariate adaptive regression splines (Golkarian et al. 2018), frequency ratio (Das and Pardeshi, 2018), index of entropy (Yariyan et al. 2021), maximum entropy (Jaafarzadeh et al. 2021), certainty factor models (Hou et al. 2017), artificial neural network model (Lee et al. 2012), decision tree (Jeihouni et al. 2019), Shannon's entropy (Khoshtinat et al. 2019), and Fisher's linear discriminant function (Chen et al. 2019). However, these methods rely on bivariate and multivariate statistical techniques, which have limitations in making assumptions before investigations and the sensitivity of results (Thapa et al. 2017).

Recently, the integrated use of remote sensing (RS) and geographical information systems (GIS) for groundwater exploration has gained popularity due to its cost-

effectiveness, efficiency, and time-saving benefits (Arulbalaji et al. 2019). Geospatial techniques have been extensively used worldwide to delineate groundwater potential zones, such as in Southwest Asia (Abijith et al. 2020), Africa (Ahmad et al. and the Arabian 2020). Peninsula (Mohammadi-Behzad et al. 2019). The analytical hierarchy process (AHP) is a widely used multi-criteria decision-making (MCDM) model for identifying potential groundwater zones, offering a simple, easy, cost-effective, transparent, and reliable approach (Dar et al. 2020). Integrating AHP and GIS provides a cost-effective method for spatial data management (Shekhar and Pandey 2014). Over the past few decades, researchers have utilized the AHP technique to weigh various thematic layers and identify potential groundwater zones, providing more accurate results requiring less computation time than traditional field methods (Zolekar and Bhagat 2015).

This study evaluates the potential zones for groundwater development (GWPZ) in Kiama, North Central Nigeria. To achieve this, various parameters were comprehensively analyzed to identify and assess areas with potential for groundwater availability. The research aims to bridge the knowledge gap in understanding the groundwater potential of this region, which has not been previously investigated. By employing a multi-criteria decision analysis (MCDA) approach combining the Analytic Hierarchy Process (AHP), Remote Sensing (RS), and Geographical Information Systems (GIS), this study seeks to delineate distinct areas with varying groundwater potentials. The findings of this research will provide valuable insights for future initiatives in sustainable groundwater

management, ensuring the optimal utilization of this vital resource.

Study Area

Kaiama, the provincial capital of Kaiama Local Government Area, is located in the northwestern part of Kwara State, Nigeria within the Federal Survey map of Nigeria Sheet 158, Kaiama SE, the area spans approximately 770 km² (Figure 1). Defined by Latitude N09°30'00" to N09°45'00" and Longitude E03°45'00" to E04°00'00", Kaiama is a border town, approximately 60 km from the international boundary with Benin Republic. Kaiama is bounded by Niger State to the north, Oyo State to the south, and Baruten LGA of Kwara State to the west.

The study area is characterized by a temperate climate with two distinct seasons: the rainy and the dry season. The rainy

season starts from May to September and is marked by cool temperatures ranging from 20°C to 35°C. In contrast, the dry season which spans from October to April, is characterized by hot and dry conditions. The study area's terrain is characterized by moderate relief in parts, with flood plains in others, relative to the surrounding hills. The major rock exposures are hills, with the highest elevation reaching 419 m above sea level and the lowest point being 289 m above sea level. The drainage system in the area is characterized by streams and rivers that flow from the northern end towards the southern end. However, most of these rivers and streams dried up during the mapping exercise, indicating rainfall as the main source of recharge.

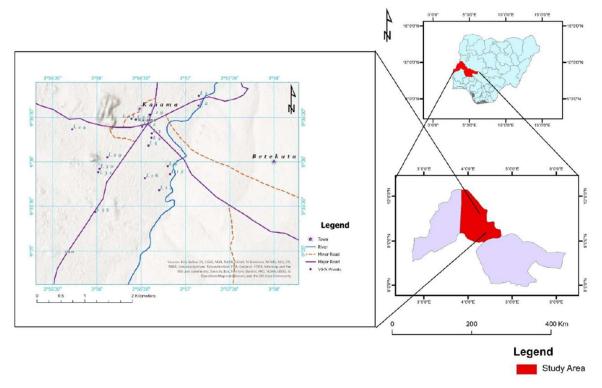


Figure 1: Location map of the Study area

MATERIAL AND METHOD

Various steps adopted in delineating groundwater potential zones are shown on the flowchart (Figure 2).

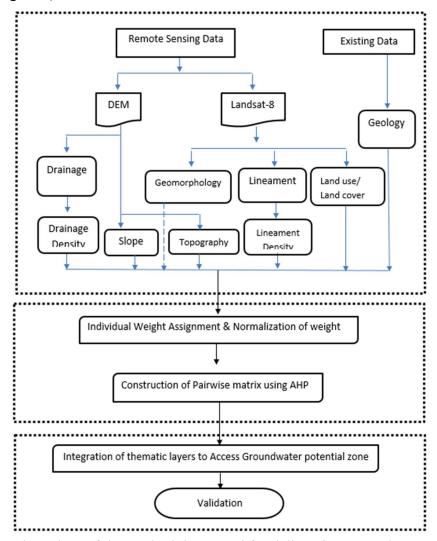


Figure 2: Flow chart of the methodology used for delineating groundwater potential zones.

Preparation of thematic layers

Various thematic maps were used in delineating groundwater potential zones based on their criteria and different factors, eight thematic maps (Geology, lineament density, drainage density, geomorphology, slope, land use/land cover, elevation, and aspect) were used to generate the groundwater potential map in a GIS system (ArcGIS 10.5). The geology and lineaments maps of the research area were obtained

from the Nigerian Geological Survey Agency from which thematic layer maps were produced employing ArcGIS 10.5. Subsequently, the lineament density layer was produced. The geomorphology, slope, elevation, and aspect maps were created using the Digital Elevation Model (DEM) of the Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) with a 30 m spatial resolution. ASTER-DEM

(https://search.earthdata.nasa.gov/search)

was adopted to prepare the drainage map, which was then processed to create the drainage density map. The Land use/Land cover map of the study area was generated from a Landsat-8.

All the thematic layers were then categorized into four different maps which include:

- 1. Geological Maps: Geological maps provide information about the lithology, structure, and hydrogeological characteristics of the subsurface. They help identify aquifer types, lithological boundaries, and geological controls on groundwater occurrence.
- 2. Topographic Maps: Topographic maps provide elevation data, slope and its gradients (aspect), and drainage patterns, which influence groundwater flow and storage.

 Digital Elevation Models (DEMs) derived from topographic data are used for terrain analysis and hydrological modeling.
- 3. Remote Sensing Imagery: Satellite imagery and aerial photographs are utilized for land cover mapping, surface water delineation, and land use classification. Remote sensing data provide spatial information on vegetation cover, surface characteristics, and land surface temperature, influencing groundwater recharge and evapotranspiration.
- 4. Hydrological Parameters:
 Hydrological parameters such as rainfall, evapotranspiration, soil properties, and land use/land cover are essential for estimating

groundwater recharge rates, infiltration capacities, and groundwater availability.

Assignment and Normalization of weight using AHP

In an integrated analysis, the most critical step is the weighting of each class because the final result is dependent on this step (Muralitharan and Palanivel 2015). This study uses the AHP-based Multi-Criteria Decision Analysis technique to assign weights. It is used as a decision-making technique to determine the final weights assigned to various thematic layers and their associated features (Sener et al. 2005). For the past few decades, the MCDM-AHP method has been widely used in multiple studies, including groundwater potential maps. Tomas Saaty developed the AHP in 1980 (Saaty 1980) as an efficient tool for organizing and resolving complex decisionmaking in groundwater. The AHP model has four stages: weight assignment, pairwise comparison matrix. weight normalization, and consistency assessment (Benjmel et al. 2020).

This technique begins by creating a decision hierarchy and then identifying criteria and sub-criteria depending on their influences on groundwater potential. The benefit of hierarchy is that it enables us to focus judgment on individual properties, which is critical for making strong decisions (Murmu *et al.* 2019). All themes' relative importance values and associated characteristics were determined using a standard Saaty's 1–9 scale (Saaty 1980) (Table 1).

Table 1: Saaty's 1–9 scale of relative importance.

Scale	1	2	3	4	5	6	7	8	9
Importanc e	Equal Importanc e	Wea k	Moderate Importanc e	Moderat e plus	Strong importanc e	Stron g plus	Very strong importanc e	Very, very stron	Extreme importanc e

All eight thematic layers were assigned weights as per groundwater potential impact, expert advice, field experience, and literature review. Geomorphology is assigned the highest weight, which is assumed to have a more significant effect on groundwater (Table 2). In contrast, the slope aspect is assigned the lowest weight,

which has less influence on groundwater (Shao et al. 2020).

A pairwise comparison matrix is computed after giving relative weights to each factor. All thematic layers were compared during the pairwise comparison matrix (Table 2).

Table 2: Pairwise comparison matrix for all factors developed for AHP-based groundwater potential zoning

Factors	Geomorp hology	Lineament Density	Geology	Slope	LULC	Drainage Density	Elevation	Aspect
Geomorph ology	1	9/8	9/7	9/6	9/5	9/4	9/2	9
Lineament Density	8/9	1	8/7	8/6	8/5	8/4	8/2	8
Geology	7/9	7/8	1	7/6	7/5	7/4	7/2	7
Slope	6/9	6/8	6/7	1	6/5	6/4	6/2	6
Land use / Land- cover	5/9	5/8	5/7	5/6	1	5/4	5/2	5
Drainage Density	4/9	4/8	4/7	4/6	4/5	1	4/2	4
Elevation	2/9	2/8	2/7	2/6	2/5	2/4	1	2
Aspect	1/9	1/8	1/7	1/6	1/5	1/4	1/2	1

The AHP eigenvector technique was used to normalize the final weights to 1. This is accomplished by adding values in each column, after which each factor is divided by the sum of its respective columns. Hence, the normalized pairwise matrix (Table 3) is generated.

Inconsistency may occur because pairwise comparisons are conducted through subjective or personal judgments (Arunbose *et al.* 2021). Therefore, the Consistency Index (CI) and consistency ratio (CR) were determined to quantify the consistency of the comparison matrix. The first step to calculate the degree of CR

involves a calculation of the principal Eigenvalue (λ max) using the Eigenvector technique (Table 3), and the consistency

index (CI) was computed using (Saaty, 1980):

Table 3: Normalized pair-wise matrix and normalized weight of each thematic layer

Factors	Geomo rpholo gy	Lineame nt Density	Geolo gy	Slop e	LU LC	Draina ge Density	Elevatio n	Aspe	Normaliz ed Weight	Eigenv ector
Geomor phology	0.18	0.26	0.3	0.29	0.3	0.34	0.34	0.37	0.3	8.57
Lineame nt Density	0.14	0.21	0.27	0.26	0.2	0.3	0.3	0.34	0.26	8.5
Geology	0.13	0.18	0.24	0.22	0.2 5	0.27	0.27	0.31	0.23	8.52
Slope	0.11	0.16	0.21	0.19	0.2	0.23	0.23	0.26	0.2	8.6
Land use / Land cover	0.09	0.13	0.17	0.16	0.1	0.19	0.19	0.21	0.17	8.65
Drainag e Density	0.07	0.1	0.14	0.13	0.1	0.15	0.15	0.16	0.14	8.79
Elevatio n	0.04	0.06	0.1	0.09	0.1	0.11	0.11	0.12	0.09	8.78
Aspect	0.02	0.03	0.05	0.04	0.0 5	0.06	0.06	0.07	0.05	10

$$CI = \frac{\lambda_{\text{max}} - n}{n - 1}$$

n the number of factors; λ_{max} principal Eigenvalue

$$\lambda_{max} \, = \, \frac{8.57 + 8.50 + 8.52 + 8.60 + 8.65 + 8.79 + 8.78 + 10.00}{8} \, = \, 8.67$$

$$\therefore \, CI \, = \, \frac{8.67 - 8}{8 - 1} \, = \, 0.10$$

The next step determines CR as the confidence interval ratio to the random consistency index (RCI) (Table 4). This step ensures that the consistency analysis is

accurate and validates the scale. CR was computed using (Saaty, 1980):

$$CR = \frac{CI}{RCI}$$

$$\therefore CR = \frac{0.10}{1.41} = 0.07$$

Since 0.07 is less than 0.1, it denotes a high consistency value for the assigned weights.

The Random Consistency Index (RCI) is calculated using Saaty's standard ratio

index (Table 4). According to Saaty (1980), a CR value of less than or equal to 0.10 is acceptable for the analysis, while the weights must be re-evaluated if the consistency value exceeds 0.10, and any necessary changes should be made before analyzing (Prasad *et al.* 2008). Furthermore, the CR value of 0 (zero) suggests that the pairwise comparison has a high degree of reliability (Arunbose *et al.* 2021).

Table 4: Random Consistency Index (RI) values for n variables.

n	1	2	3	4	5	6	7	8	9	10
RI	0	0	0.58	0.89	1.12	1.24	1.32	1.41	1.45	1.49

Finally, the groundwater potential zone map was created using ArcGIS 10.5 with a weighted overlay analysis tool (Ghosh *et al.* 2020; Aykut 2021).

Where GM is geomorphology, G is geology, LD is lineament density, SL is a slope, LULC denotes land use and land cover, DD denotes drainage density, EL is elevation, and SA is the slope aspect. The suffix w represents weight, while r indicates the rank of each layer, respectively.

RESULTS AND DISCUSSION

Table 5: Assigned rank and normalized weights of different sub-class of each thematic layer for groundwater potential zoning

Factors	Weight (%)	Sub-class	Rank	Overall weight
Geology	23	Granite	1	0.07
		Syenite	3	0.22
		Migmatite	2	0.14
		Pegmatite	4	0.30
		Quartz vein	4	0.28
Lineament Density	26	0 - 100	1	0.06
(km/km^2)		101 - 250	2	0.13
		251 - 450	3	0.2
		451 - 600	4	0.27
		>601	5	0.34

Yusuf, M.A.; Arowolo, M.O.; Alao, J.O.; Abiye, T.A.; Ibrahim, K.O.; Oyeleke, T.A.; Omotoso, O.A.; Iheme, K.O.; Bakare, U.T.

Water Resources Vol 34 (2024)

		T		
Slope (degree)	20	0.1 - 5.6	5	0.33
		5.7 - 11.3	4	0.27
		11.4 - 16.9	3	0.21
		17 - 22.5	2	0.13
		>22.5	1	0.06
Drainage Density	14	0 - 93.7	5	0.33
(km/km^2)		93.8 - 281.2	4	0.27
		281.3 - 468.6	3	0.2
		468.7 - 656	2	0.12
		>657	1	0.07
Land use/ Land cover	17	Developed	1	0.07
(LULC)		Barren	1	0.07
		Forest	4	0.28
		Cultivated land	3	0.22
		Wetlands	5	0.36
Geomorphology	30	Flat	5	0.23
		Peak	1	0.05
		Slope	2	0.09
		Ridge	1	0.04
		Valley	5	0.22
		Shoulder	1	0.05
		Foot slope	3	0.14
		Pit	4	0.18
Elevation (masl)	9	289 - 300	4	0.40
		300 - 350	3	0.30
		350 - 400	2	0.20
		>400	1	0.10
Aspect (degree)	5	-1	5	0.34
		0 - 112.5	4	0.29
		112.5 - 247.5	3	0.21
		247.5 - 360	2	0.14

Geomorphology

Groundwater occurrence, prospection, and movement governed are all by It geomorphology. represents the subsurface formation that controls the groundwater movement (Saravanan et al. 2020). Geomorphological units can be classified according to their landforms, including plains, terraces, volcanoes, hills, valleys, and mountains, valleys, flat plains, ridges, slopes, hallows, pits, shoulders, and peaks are the common geomorphological types that make up the study area (Figure 3).

Geology

Geology completely determines penetration and percolation of groundwater. As a result, it is a crucial criterion for assessing groundwater potential (Aju et al. 2021). Geology is vital in determining groundwater's source, and distribution regulating water's surface runoff and percolation. Crystalline rocks of the Precambrian age underlie the entirety of the study area. Hydrogeologically, these rocks are categorized as hard rocks with low primary porosity and permeability.

However, secondary porosity and permeability structures such as extensively deep weathering, fracturing, and jointing on rocks serve as an interconnecting means and room for groundwater movement and accumulation (Pawar *et al.* 2008).

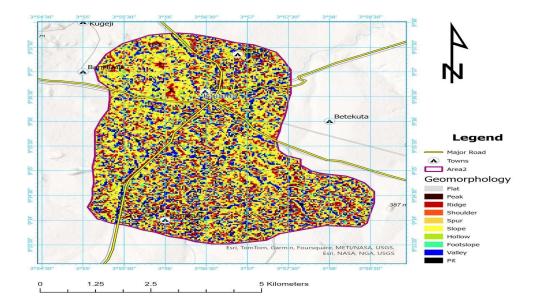


Figure 3: Geomorphology map of the study area

The lithologies found in Kaiama, north central Nigeria are displayed in (Figure 4). About 57% of "granite" occupies a large portion of the study area, followed by "syenite", which occupies 18% of the study area. The other major geological units present in the region are migmatite (11%), pegmatite (8 %) and quartz-vein (6%).

The study area is predominantly composed of granite, followed closely by syenite. These are crystalline rocks with a compact structure with little to no porosity. However, this type of hard rock holds moderate to high groundwater depending on the intensity of secondary porosity such as fracture, lineament, fault, etc. (Seenipandi et al. 2019). For groundwater recharge, the more weathered rocks, less dense, and more prone to fracturing make better infiltration and runoff conditions (Krishnamurthy et al.

2000). Each rock type was given a specific weight based on these factors (Table 5.0).

Lineament density (Ld)

Lineaments are the linear features of tectonic origin identified as long, narrow, and relatively straight alignments visible in satellite images. A lineament may represent a fault, fracture, and master joint; a long and linear geological formation; a straight course of streams; vegetation alignment or topographic linearity (Pradhan, 2009). They features with secondary are permeability and give a clue to the movement and storage of groundwater. Therefore, they are important guides for groundwater exploration (Sener et al. 2005). Recently, many groundwater exploration projects conducted in various countries have obtained higher success rates when sites for drilling were guided by lineament mapping (Teeuw 1995).

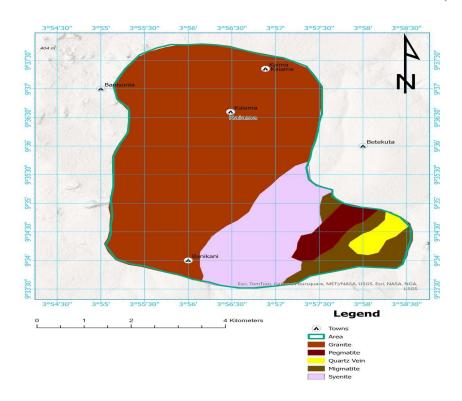


Figure 4: Geology map of the study area

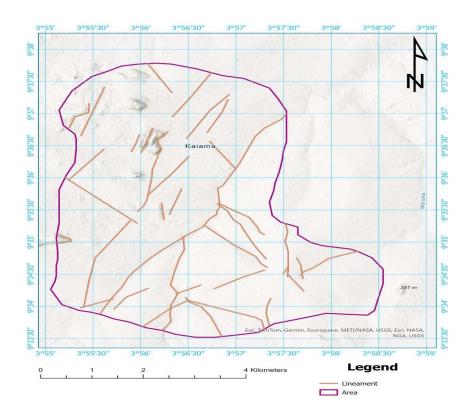


Figure 5: Lineament map of the study area

To convert the lineament pattern into measurable quantity, the lineaments have been identified with the aid of lineament filters and visual comments on Landsat 8 (Figure 5). For this purpose, the lineament density (Ld) was calculated based on the

grid cells method (Rahmati *et al.* 2016). Groundwater potential increases with increasing lineament density values (Varade *et al.* 2018). The obtained lineament density was classified as follows: [0-100] very low (64%), [101-250] low (11%), [251-450] moderate (17%), [451-600] high (5%) and [601-890] very high

(3%). The study area is controlled by very low lineament density, with the least aerial extent of very high lineament density in the southwestern part (Figure 6). It is also observed that high lineaments are located in pegmatite and syenite-dominated regions, which could be due to deep faults or fractures in the area.

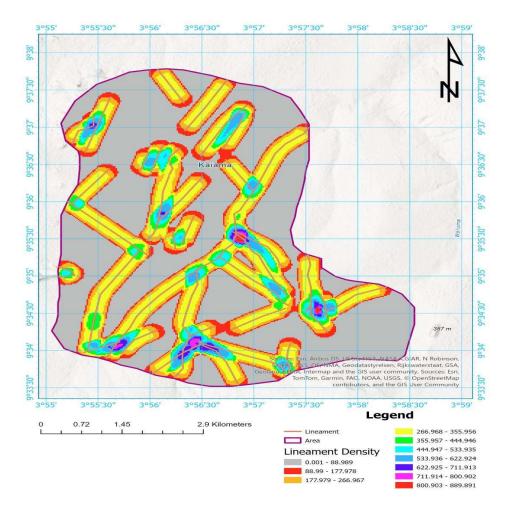


Figure 6: Lineament Density (Ld) map of the study area

Slope

Because the slope has a direct influence on the surface runoff mechanism, it is critical for groundwater recharge (Zghibi *et al.* 2020). Preliminary investigations have revealed that the low-slope regions have a good potential for groundwater storage due to the extended residence time for rainwater infiltrating the subsurface. However, steep slope regions, on the other hand, possess poor groundwater potential due to rapid water runoff from the landscape (Igwe *et al.* 2020).

The slope of Kaiama district was split into five classes: 0.1-5.6° (very good potential), 5.7-11.3° (good potential), 11.4-16.9° (moderate potential), 17-22.5° (poor potential), and 22.6-26.2° (very poor potential) (Figure 7). The first class with

very good potential occupies 72 % of the study area due to the very flat slope indicating that the area has a slope conducive to water retention, ideal for a good recharge, and aids low runoff.

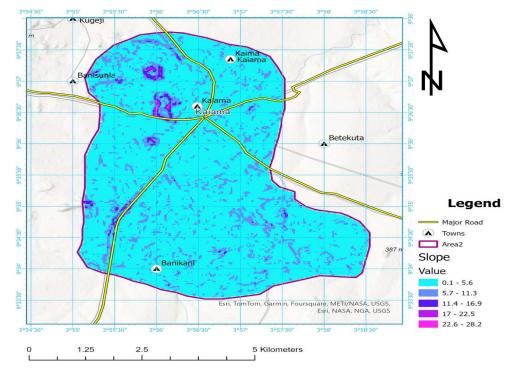


Figure 7: Slope map of the study area

Land use/land cover (LULC)

Land use/land cover pattern is among the most important elements regulating surface runoff due to evapotranspiration, penetration, and condensation all dependent on factors like vegetation type and soil wetness. Groundwater depletion occurs in wastelands and densely populated areas, while the water table rises in forest areas due to low runoff and high subsurface infiltration (Sahoo *et al.* 2017).

The land use of the study area is classified into five classes: developed, forest, barren,

planted/cultivated, and wetlands (Figure 8). Approximately 57% of the total area is covered by planted/cultivated land for agricultural purposes, and 22% of the area is filled with developed settlements. Wetlands such as flood plains represent 16%, 4% of the area is covered by barren lands and exposures while the remaining 1% represents forest. Classification of land use for weighted analysis was decided based on the land-use type, area coverage properties to infiltrate water, and their characteristics to hold water on the ground surface (Table 5.0).

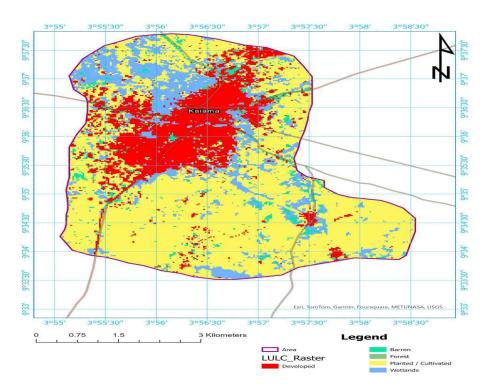


Figure 8: Land Use/Land Cover map of the study area

Elevation

Approximately 70% of the study area is mountainous. The elevation map was generated from ASTER DEM data using the GIS ArcMap 10.1 and constructed as an elevation in raster format. The elevation map of the area was classified based on the shape and features of the terrain into four different sub-classes: 289-300 masl considered as 'yery good'; 300-350 masl considered as 'good'; 350-400 masl considered as 'poor'; and 400-419 masl

considered as 'very poor'. As described above, an elevation of 289–419 masl was grouped into four different elevations above mean sea level as hilly and steep slopes, and it has less influence on groundwater occurrence. The pairwise comparison shows that areas with a rolling hill shape and flat terrain are calculated as a higher weight and a hilly and mountainous shape was calculated as a lower weight, and the reclassified elevation map was produced based on these principles (Figure 9).

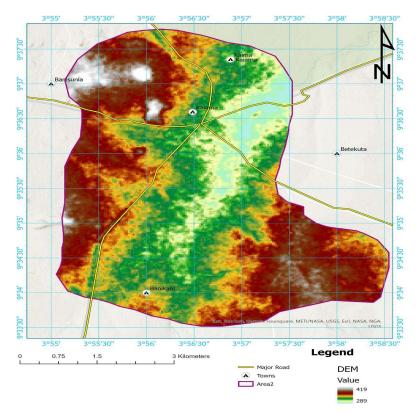


Figure 9: Elevation map of the study area

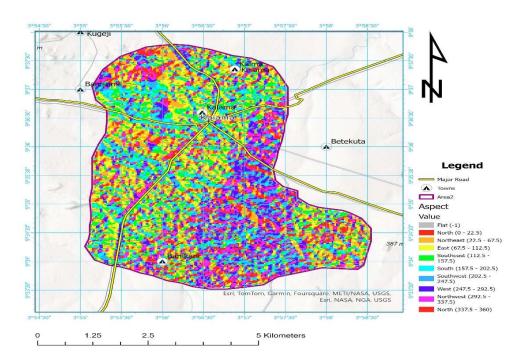


Figure 10: Slope Aspect map of the study area

Aspect

An aspect map plays a vital role in understanding groundwater potential by showing the direction slopes face, which influences temperature and sunlight exposure. Derived from a Digital Elevation Model (DEM), this map categorizes slopes into different directions, affecting

groundwater retention. Slopes facing north, northeast, and east (0 - 112.5 degrees) and flat surfaces (-1) receive less sunlight, keeping them cooler with lower evaporation rates, which helps preserve groundwater. In contrast, slopes facing south, southeast, southwest, and west (112.5 - 360 degrees) get more sunlight, especially during the hottest parts of the day. This leads to higher temperatures and more evapotranspiration, evaporation and causing greater groundwater loss (Figure 10).

Groundwater potential zones and map

After computing the final normal weights of all the thematic layers and their features, they were converted into a raster format. The groundwater potential map values were classified into five groundwater potential zones: very high potential, high potential, average potential, poor potential, and very poor potential zone (Figure 11).

The study revealed that 45% (51.93 Sqkm) of the study area exhibits very low groundwater potential, whereas the low potential zones represent about 21% of the total area of the study (24.23 Sqkm). Around 13% of the total area (15 Sqkm) is rated as having average potential zones, while 6% (6.94 Sqkm) is classified as having high potential zones and finally 15% (17.3 Sqkm) of the study area is classified as very high potential zones (Table 6).

Table 6: Classification of groundwater potential zones and their respective area

Potential zones	Area covered (Sqkm)	Area covered (%)
Very Low	51.93	45
Low	24.234	21
Average	15.002	13
High	6.924	6
Very High	17.31	15

The low and very low regions of the groundwater potential map fall mostly on the igneous rock at the center of the study area, due to the crystallized structure of granite and little to no fracture present in the study area reducing the amount of groundwater recharge of the zones, the average zone is located at the northwest of

the map which is common with gentle slopes and presence of fractures which aids in recharge of groundwater. The high and very high potential zones are much more than the average zone due to valleys, pits, faults, pegmatitic intrusions, and fractures which aid the storage and pathway of groundwater.

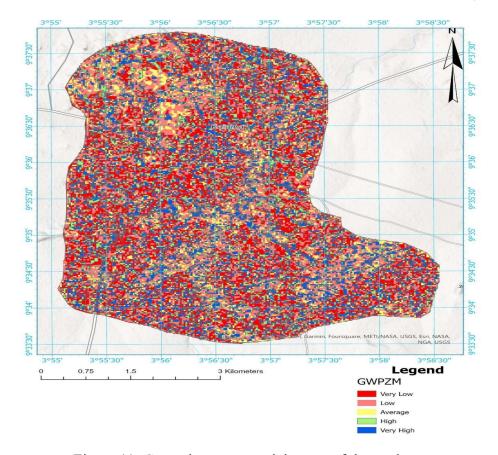


Figure 11: Groundwater potential zones of the study area

Validation of Groundwater potential zone

The validation of the groundwater potential map adopted the VES method, which measures subsurface resistivity and is a reliable indicator of groundwater potential. For this validation, we used VES data points from 20 locations.

To quantitatively assess the predictive accuracy of the groundwater potential map, we applied the Receiver Operating Characteristic (ROC) analysis. This involved calculating the True Positive Rate (TPR) and False Positive Rate (FPR) at

various threshold settings. The ROC curve was plotted with FPR on the x-axis and, TPR on the y-axis, resulting in an Area Under the Curve (AUC) value of 0.60 (Figure 12). This AUC value suggests a moderate level of agreement between the predicted groundwater potential zones and the actual VES measurements, indicating the model has good predictive value, however, there is room for improvement, particularly in hard rock terrains where the presence of high-structural features such as faults and fractures can affect groundwater distribution.

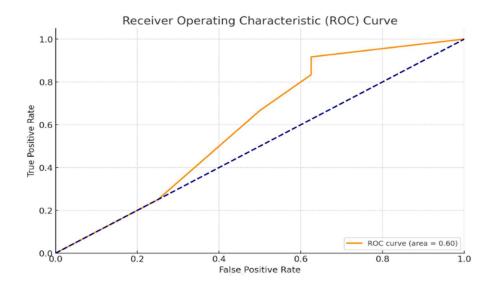


Figure 12: ROC curve of the GWPA map in Kaiama

CONCLUSION

As populations grow, identifying areas with high, medium, and low groundwater potential is vital for making informed policies and managing resources effectively. This research has created a specialized mapping tool using various geological and hydrological parameters to help decisionmakers. The groundwater potential in the Kiama district was evaluated using a specialized analyzer method in conjunction with the MCDM technique. The normalized weight and rank of each element and its sub-classes affecting groundwater potential probability in the region were successfully determined using the MCDM-AHP approach. The resulting Groundwater Potential (GWP) map was subsequently created. providing a comprehensive understanding of the area's groundwater resources. The result showed that 15 %, 6 %, 13 %, 21 %, and 44 % of the study area fall

under a very high, high, average, low, and very low groundwater potential zone, respectively. Validation against 20 Vertical Electrical Sounding (VES) points at a depth of 100 meters yielded an Area Under the Curve (AUC) of 60%, demonstrating good predictive accuracy. Therefore, the data validation process confirms the correctness of the AHP forecast information. In addition, the utilization of multiple techniques proved to be an effective and efficient tool in subsurface groundwater delineation and exploration. Lastly, in areas with high water demand, it is essential to prioritize planning and allocation of resources in building wells and boreholes focusing on the areas with very high and high groundwater potential zones to optimize water supply. However, areas classified as low potential zones may not be suitable for extensive groundwater extraction, and alternative sources should be explored.

DECLARATION

Conflict of Interest: The authors hereby declare that there are no conflicts of

interest associated with this research work. We affirm that no personal, financial, or professional interests have influenced the

design, execution, or presentation of the research in any way. The findings and conclusions presented in this manuscript are based solely on objective and unbiased scientific inquiry.

Conflict of Interest: On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author Contributions: All authors contributed to the conceptualization and design of the study. Material preparation,

REFERENCES

Abijith D, Saravanan S, Singh L, Jennifer JJ, Saranya T, Parthasarathy KSS (2020) GISbased multi-criteria analysis for identification of potential groundwater recharge zones: A case study from Ponnaniyaru watershed, Tamil Nadu, India. HydroResearch, 3, 1-14. https://doi.org/10.1016/j.hydres .2020.02.002

Ahmad I, Dar MA, Andualem TG, Teka AH (2020) GIS-based multi-criteria evaluation of groundwater potential of the Beshilo River basin, Ethiopia. Journal of African Earth Sciences, 164, 103747. https://doi.org/10.1016/j.jafrearsci.2019.103747

Aju CD, Achu AL, Raicy MC, Reghunath R
(2021) Identification of suitable
sites and structures for
artificial groundwater recharge for
sustainable water
resources management
in Vamanapuram River Basin,
South India. HydroResearch, 4, 24–
37.

data collection, and analysis were performed by [Yusuf, M.A.; Arowolo, M.O.; Alao, J.O.; Ibrahim, K.O.; Abiye, T.A; Oyeleke, T.A.; and Omotoso, O.A]; The first original draft preparation was written by [Yusuf, M.A. and Arowolo, M.O.], The initial review and editing were written by [Iheme, K.O. and Bakare, U.T.]; All authors reviewed, edited, and provided feedback on earlier versions of the manuscript. All authors read and approved the final version of the manuscript

Arulbalaji P, Padmalal D, Sreelash K (2019)
GIS and AHP techniques based delineation of groundwater potential zones: A case study from Southern Western Ghats, India. Scientific Reports, 9, 1–17. https://doi.org/10.1038/s41598-019-38567-x

Arunbose S, Srinivas Y, Rajkumar S, Nair NC. Kalirai S (2021)Remote sensing, GIS and AHP techniques based investigation of groundwater potential zones in the Karumeniyar river basin, Tamil Nadu, southern India. Groundwater for Sustainable Development, 14, 100586. https://doi.org/10.1016/J.G SD.2021.100586

Aykut (2021)Determination of groundwater potential zones using geographical information systems (GIS) and analytic hierarchy process (AHP) between Edirne-Kalkansogut (northwestern Turkey). for Sustainable Groundwater Development, 12,

100545. https://doi.org/10.1016/j.g sd.2021.100545

- Benjmel K, Amraoui F, Boutaleb S, Ouchchen M, Tahiri A, Touab Mapping of A (2020) groundwater potential zones in crystalline terrain using remote sensing, GIS techniques, multicriteria data analysis (Case of the Ighrem Region, Western Morocco). Anti-Atlas, Water. 12, 471. https://doi.org/10.3390/w1 2020471
- Bera A, Mukhopadhyay BP, Barua S (2020)

 Delineation of groundwater potential zones in Karha river basin, Maharashtra, India, using AHP and geospatial techniques. Arabian Journal of Geosciences, 13, 1–21. https://doi.org/10.1007/S12517-020-05702-2
- Chen W, Pradhan B, Li S, Shahabi H, Rizeei HM, Hou E, Wang S (2019)
 Novel hybrid integration approach of bagging-based Fisher's linear discriminant function for groundwater potential analysis.
 Natural Resources Research, 28, 1239–
 1258. https://doi.org/10.1007/S110
 - 1258. https://doi.org/10.1007/S110 53-019-09465-W
- Dar T, Rai N, Bhat A (2020) Delineation of potential groundwater recharge zones using analytical hierarchy process (AHP). Geology, Ecology, and Landscapes, 5, 292–307. https://doi.org/10.1080/24749 508.2020.1726562
- Das S, Pardeshi SD (2018) Integration of different influencing factors in GIS to delineate groundwater potential

- areas using IF and FR techniques: a study of Pravara basin, Maharashtra, India. Applied Water Science, 8, 1–16. https://doi.org/10.1007/S13201-018-0848-X
- Gbosh D, Mandal M, Karmakar M,
 Banerjee M, Mandal D (2020)
 Application of geospatial
 technology for delineating
 groundwater potential zones in the
 Gandheswari watershed, West
 Bengal. Sustainable Water
 Resource Management, 6, 1–
 14. https://doi.org/10.1007/S40899-020-00372-0
- Golkarian A, Naghibi SA, Kalantar B, Pradhan B (2018) Groundwater potential mapping using C5.0, random forest, and multivariate adaptive regression spline models in GIS. Environmental Monitoring and Assessment, 190, 1–16. https://doi.org/10.1007/S10661-018-6507-8
- Halder S, Roy MB, Roy PK (2020) Fuzzy logic algorithm based analytic hierarchy process for delineation of groundwater potential zones in complex topography.

 Arabian Journal of Geosciences. https://doi.org/10.100
 7/s12517-020-05525-1
- Hou E, Wang J, Chen W (2017)
 A comparative study on groundwater spring potential analysis based on statistical index, index of entropy and certainty factors models.
 Geospatial Intelligence, 33, 754–769. https://doi.org/10.1080/10106
 049.2017.1299801

Igwe O, Ifediegwu SI, Onwuka OS (2020)

Determining the occurrence of potential groundwater zones using integrated hydrogeomorphic parameters, GIS and remote sensing in Enugu State, Southeastern Nigeria.

Sustainable Water

Resource Management, 6,
39. https://doi.org/10.1007/s40899-020-0039

Jaafarzadeh MS, Tahmasebipour N, Haghizadeh A, Pourghasemi HR, Rouhani H (2021) Groundwater recharge potential zonation using an ensemble of machine learning and bivariate statistical models. Scientific Reports, 11, 1–18. https://doi.org/10.1038/s41598-021-85205-6

Jeihouni M, Toomanian A, Mansourian A (2019)Decision tree based data mining and rule induction for identifying high quality groundwater zones to water supply management: a novel hybrid use of mining and data GIS. Water Resources Management, 34, 139 -

154. https://doi.org/10.1007/S1126 9-019-02447

Jha MK, Chowdary VM, Chowdhury A
(2010) Groundwater assessment in
Salboni Block, West Bengal (India)
using remote sensing,
geographical information
system and multi-criteria
decision analysis techniques.
Hydrogeology Journal, 18, 1713–
1728. https://doi.org/10.1007/S100
40-010-0631-Z

Khoshtinat S, Aminnejad B, Hassanzadeh Y, Ahmadi H (2019) Groundwater potential assessment of the Sero plain using bivariate models of the frequency ratio, Shannon entropy and evidential belief function. Journal of Earth System Science, 128, 1–16. https://doi.org/10.1007/S12040-019-1155-0

Kom KP, Gurugnanam B, Sunitha V (2022)

Delineation of groundwater potential zones using GIS and AHP techniques in Coimbatore district, South India. International Journal of Energy and Water Resources, 1–20. https://doi.org/10.1007/s42108-022-00188-y

Kordestani MD, Naghibi SA, Hashemi H, Ahmadi K, Kalantar B, Pradhan B (2019) Groundwater potential mapping using a novel data-mining ensemble model. Hydrogeology Journal, 27, 211–224. https://doi.org/10.1007/s10040-018-1848

Krishnamurthy J, Mani A, Jayaraman V, Manivel M (2000) Groundwater resources development in hard rock terrain: An approach using remote sensing and GIS techniques. International Journal of Applied Earth Observation and Geoinformation, 2, 204–215. https://doi.org/10.1016/S0303-2434(00)85015-1

Lee Kim YS, Oh HJ (2012)Application of weights of a evidence method and GIS to regional groundwater mapping. productivity potential Journal of Environmental Management, 96, 91-

105. https://doi.org/10.1016/J.JEN VMAN.2011.09.016

- Mohammadi-Behzad HR, Charchi A, Kalantari N, Nejad AM, Vardanjani HK (2019) Delineation potential zones of groundwater using remote sensing (RS), geographical information system (GIS) and analytic hierarchy process (AHP) techniques: A case the Leylia-Keynow study in watershed, southwest of Iran. Carbonates and Evaporites, 34, 1307 -1319. https://doi.org/10.1007/s1314 6-018-0420-7
- Muralitharan J, Palanivel K (2015)
 Groundwater targeting using remote sensing,
 geographical information
 system and analytical hierarchy process method in hard rock aquifer system, Karur district, Tamil Nadu,
 India. Earth Science Informatics, 8,
 827–
 842. https://doi.org/10.1007/S1214
 - 842. https://doi.org/10.1007/S12145-015-0213-7
- Murmu P, Kumar M, Lal D, Sonker I, Singh SK (2019) Delineation of groundwater potential zones using geospatial techniques and analytical hierarchy process in Dumka district, Jharkhand, India. Groundwater for Sustainable Development, 9, 100239. https://doi.org/10.1016/J.G SD.2019.100239
- Norouzi H, Moghaddam AA (2020)
 Groundwater quality assessment
 using random forest method
 based on groundwater quality
 indices (case study: Miandoab plain
 aquifer, NW of Iran). Arabian

- Journal of Geosciences, 13, 1–13. https://doi.org/10.1007/S12517-020-05904-8
- Oh HJ, Kim YS, Choi JK, Park E, Lee S (2011) GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. Journal of Hydrology, 399, 158–172. https://doi.org/10.1016/J.JHY DROL.2010.12.027
- Pawar NJ, Pawar JB, Kumar S, Supekar A (2008) Geochemical eccentricity of ground water allied to weathering of basalts from the Deccan Volcanic Province, India: insinuation on CO2 consumption. Aquatic Geochemistry, 14, 41–71. https://doi.org/10.1007/S10498-007-9025-9
- Pourghasemi HR, Sadhasivam N, Yousef S, Tavangar S, Ghaffari Nazarlou H, Santosh M (2020) Using machine learning algorithms to map the groundwater recharge potential zones. Journal of Environmental Management, 265, 110525. https://doi.org/10.1016/J.JENVMAN.2020.110525
- Pradhan B (2009) Groundwater potential zonation for basaltic watersheds using satellite remote sensing data and GIS techniques.

 Central European Journal of Geosciences, 1(1), 120–129.
- Prasad P, Loveson VJ, Kotha M, Yadav R
 (2020) Application of machine learning techniques in groundwater potential mapping along the west coast of India. Giscience Remote Sens. https://doi.org/10.10
 80/15481603.2020.1794104

- Yusuf, M.A.; Arowolo, M.O.; Alao, J.O.; Abiye, T.A.; Ibrahim, K.O.; Oyeleke, T.A.; Omotoso, O.A.; Iheme, K.O.; Bakare, U.T.

 Water Resources Vol 34 (2024)
- Prasad RK, Mondal NC, Banerjee P, Nandakumar MV, Singh VS (2008)

 Deciphering potential groundwater zone in hard rock through the application of GIS.

 Environmental Geology, 55, 467–475. https://doi.org/10.1007/S0025
 4-007-0992-3
- Rahmati O, Pourghasemi HR, Melesse AM (2016) Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran. CATENA, 137, 360–372. https://doi.org/10.1016/J.CAT ENA.2015.10.010
- Rizeei HM, Azeez OS, Pradhan B, Khamees HH (2018) Assessment of groundwater nitrate contamination hazard in a semi-arid region by using integrated parametric IPNOA and data-driven logistic regression models. Environmental Monitoring and Assessment, 190, 1–17. https://doi.org/10.1007/S10661-018-7013-8
- Saaty TL (1980) The analytic hierarchy process. McGraw-Hill.
- Sahoo S, Munusamy SB, Dhar A, Kar A, Ram P (2017) Appraising the accuracy of multi-class frequency ratio and weights of evidence method for delineation of regional groundwater potential zones in canal command system.

 Water Resource Management, 31, 4399–
 - 4413. https://doi.org/10.1007/S112 69-017-1754
- Saravanan S, Saranya T, Jennifer JJ, Singh L, Selvaraj A, Abijith D (2020)

- Delineation of groundwater potential zone using analytical hierarchy process and GIS for Gundihalla watershed, Karnataka, India. Arabian Journal of Geosciences. https://doi.org/10.100 7/s12517-020-05712-0
- Seenipandi K, Nainarpandian C, Kandathil RK, Sellamuthu S (2019) Seawater intrusion vulnerability in the coastal aquifers of southern India: An appraisal of the GALDIT model, parameters' sensitivity, and hydrochemical indicators. Environmental Science and Pollution Research, 26, 9755–9784. https://doi.org/10.1007/S11356-019-04401
- Sener E, Davraz A, Ozcelik M (2005) An integration of GIS and remote sensing in groundwater investigations: a case study in Burdur, Turkey. Hydrogeology Journal, 13(5–6), 826–834.
- Shao Z, Huq ME, Cai B, Altan O, Li Y
 (2020) Integrated remote
 sensing and GIS approach using
 Fuzzy-AHP to delineate
 and identify groundwater potential
 zones in semi-arid Shanxi Province,
 China. Environmental Modelling
 and Software,
 134, 104868. https://doi.org/10.101
 6/J.ENVSOFT.2020.104868
- Shekhar S, Pandey AC (2014) Delineation of groundwater potential zone in hard rock terrain of India using remote sensing, geographical information system (GIS) and analytic hierarchy process (AHP) techniques.

Geospatial Intelligence, 30, 402–421. https://doi.org/10.1080/10106 049.2014.894584

Teeuw RM (1995) Groundwater exploration using remote sensing and a low-cost geographical information system. Hydrogeology Journal, 3, 21–30.

Thapa R, Gupta S, Guin S, Kaur H (2017)
Assessment of
groundwater potential zones using
multi-influencing factor (MIF) and
GIS: A case study from Birbhum
district, West Bengal. Applied
Water Science, 7, 4117–
4131. https://doi.org/10.1007/S132
01-017-0571-Z

Tiwari A, Ahuja A, Vishwakarma BD, Jain K (2019) Groundwater potential zone (GWPZ) for urban development site suitability analysis in Bhopal, India. Journal of the Indian Society of Remote Sensing, 47, 1793–1815. https://doi.org/10.1007/s12524-019-01027

Varade AM, Khare YD, Yadav P, Doad AP,
Das S, Kanetkar M, Golekar RB
(2018) 'Lineaments' the potential
groundwater zones in hard rock
area: A case study of Basaltic
Terrain of WGKKC-2 Watershed
from Kalmeswar Tehsil of Nagpur
District, Central India. Journal of
the Indian Society of Remote
Sensing, 46, 539–

549. https://doi.org/10.1007/S1252 4-017-0716-4

Yariyan P, Avand M, Omidvar E, Pham QB, Linh NT, Tiefenbacher JP (2021) Optimization of statistical and machine learning hybrid models for groundwater potential mapping. Geospatial Intelligence. https://doi.org/10.108 0/10106049.2020.187016

Yıldırım Ü (2021) Identification of groundwater potential zones using GIS and multi-criteria decision-making techniques: A case study upper Coruh River basin (NE Turkey). ISPRS International Journal of Geo-Information, 10(6), 396.

https://doi.org/10.3390/ijgi1006039

Zghibi A, Mirchi A, Msaddek MH, Merzougui A, Zouhri L, Taupin JD, Chekirbane A, Chenini I, Tarhouni J (2020) Using analytical hierarchy process and multi-influencing factors to map groundwater recharge zones in a semi-arid Mediterranean coastal aquifer. Wat 12:2525

Zolekar RB, Bhagat VS (2015). Multicriteria land suitability analysis for agriculture in hilly zone: Remote sensing and GIS approach. Computers and Electronics in Agriculture, 118, 300–321. https://doi.org/10.1016/J.COMPAG.2015.09.016